Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
慢慢CG
Mace
提交
eebd7868
Mace
项目概览
慢慢CG
/
Mace
与 Fork 源项目一致
Fork自
Xiaomi / Mace
通知
1
Star
0
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
DevOps
流水线
流水线任务
计划
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
Mace
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
DevOps
DevOps
流水线
流水线任务
计划
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
流水线任务
提交
Issue看板
提交
eebd7868
编写于
9月 22, 2017
作者:
李
李寅
浏览文件
操作
浏览文件
下载
差异文件
Merge branch 'master' into 'master'
Refactor conv related op See merge request !55
上级
f16cf77e
736ceb5f
变更
19
显示空白变更内容
内联
并排
Showing
19 changed file
with
83 addition
and
110 deletion
+83
-110
mace/core/logging.h
mace/core/logging.h
+11
-1
mace/core/net.cc
mace/core/net.cc
+2
-0
mace/core/tensor.h
mace/core/tensor.h
+1
-1
mace/core/workspace.cc
mace/core/workspace.cc
+4
-0
mace/kernels/conv_2d.h
mace/kernels/conv_2d.h
+2
-14
mace/kernels/depthwise_conv2d.h
mace/kernels/depthwise_conv2d.h
+3
-14
mace/kernels/global_avg_pooling.h
mace/kernels/global_avg_pooling.h
+1
-4
mace/kernels/pooling.h
mace/kernels/pooling.h
+1
-3
mace/ops/conv_2d.cc
mace/ops/conv_2d.cc
+2
-2
mace/ops/conv_2d.h
mace/ops/conv_2d.h
+10
-7
mace/ops/conv_2d_benchmark.cc
mace/ops/conv_2d_benchmark.cc
+1
-1
mace/ops/conv_2d_test.cc
mace/ops/conv_2d_test.cc
+5
-5
mace/ops/conv_pool_2d_base.h
mace/ops/conv_pool_2d_base.h
+1
-42
mace/ops/depthwise_conv2d.h
mace/ops/depthwise_conv2d.h
+11
-5
mace/ops/depthwise_conv2d_test.cc
mace/ops/depthwise_conv2d_test.cc
+3
-3
mace/ops/depthwise_conv_2d_benchmark.cc
mace/ops/depthwise_conv_2d_benchmark.cc
+1
-1
mace/ops/pooling.h
mace/ops/pooling.h
+1
-0
mace/python/tools/tf_converter.py
mace/python/tools/tf_converter.py
+1
-0
mace/python/tools/tf_converter_lib.py
mace/python/tools/tf_converter_lib.py
+22
-7
未找到文件。
mace/core/logging.h
浏览文件 @
eebd7868
...
@@ -8,6 +8,7 @@
...
@@ -8,6 +8,7 @@
#include <limits>
#include <limits>
#include <sstream>
#include <sstream>
#include <string>
#include <string>
#include <vector>
#undef ERROR
#undef ERROR
...
@@ -41,7 +42,16 @@ template <typename... Args>
...
@@ -41,7 +42,16 @@ template <typename... Args>
string
MakeString
(
const
Args
&
...
args
)
{
string
MakeString
(
const
Args
&
...
args
)
{
std
::
stringstream
ss
;
std
::
stringstream
ss
;
MakeStringInternal
(
ss
,
args
...);
MakeStringInternal
(
ss
,
args
...);
return
string
(
ss
.
str
());
return
ss
.
str
();
}
template
<
typename
T
>
string
MakeString
(
const
std
::
vector
<
T
>
&
args
)
{
std
::
stringstream
ss
;
for
(
const
T
&
arg
:
args
)
{
ss
<<
arg
<<
", "
;
}
return
ss
.
str
();
}
}
// Specializations for already-a-string types.
// Specializations for already-a-string types.
...
...
mace/core/net.cc
浏览文件 @
eebd7868
...
@@ -35,6 +35,8 @@ bool SimpleNet::Run() {
...
@@ -35,6 +35,8 @@ bool SimpleNet::Run() {
LOG
(
ERROR
)
<<
"Operator failed: "
<<
ProtoDebugString
(
op
->
debug_def
());
LOG
(
ERROR
)
<<
"Operator failed: "
<<
ProtoDebugString
(
op
->
debug_def
());
return
false
;
return
false
;
}
}
VLOG
(
1
)
<<
"Op "
<<
op
->
debug_def
().
name
()
<<
" has shape: "
<<
internal
::
MakeString
(
op
->
Output
(
0
)
->
shape
());
}
}
return
true
;
return
true
;
}
}
...
...
mace/core/tensor.h
浏览文件 @
eebd7868
...
@@ -137,7 +137,7 @@ class Tensor {
...
@@ -137,7 +137,7 @@ class Tensor {
alloc_
->
CopyBytes
(
raw_mutable_data
(),
src
,
size
);
alloc_
->
CopyBytes
(
raw_mutable_data
(),
src
,
size
);
}
}
inline
void
DebugPrint
()
{
inline
void
DebugPrint
()
const
{
std
::
stringstream
os
;
std
::
stringstream
os
;
for
(
int
i
:
shape_
)
{
for
(
int
i
:
shape_
)
{
os
<<
i
<<
", "
;
os
<<
i
<<
", "
;
...
...
mace/core/workspace.cc
浏览文件 @
eebd7868
...
@@ -53,6 +53,10 @@ Tensor* Workspace::GetTensor(const string& name) {
...
@@ -53,6 +53,10 @@ Tensor* Workspace::GetTensor(const string& name) {
void
Workspace
::
LoadModelTensor
(
const
NetDef
&
net_def
,
DeviceType
type
)
{
void
Workspace
::
LoadModelTensor
(
const
NetDef
&
net_def
,
DeviceType
type
)
{
Serializer
serializer
;
Serializer
serializer
;
for
(
auto
&
tensor_proto
:
net_def
.
tensors
())
{
for
(
auto
&
tensor_proto
:
net_def
.
tensors
())
{
VLOG
(
1
)
<<
"Load tensor: "
<<
tensor_proto
.
name
()
<<
" has shape: "
<<
internal
::
MakeString
(
vector
<
index_t
>
(
tensor_proto
.
dims
().
begin
(),
tensor_proto
.
dims
().
end
()));
tensor_map_
[
tensor_proto
.
name
()]
=
tensor_map_
[
tensor_proto
.
name
()]
=
serializer
.
Deserialize
(
tensor_proto
,
type
);
serializer
.
Deserialize
(
tensor_proto
,
type
);
}
}
...
...
mace/kernels/conv_2d.h
浏览文件 @
eebd7868
...
@@ -12,19 +12,8 @@ namespace mace {
...
@@ -12,19 +12,8 @@ namespace mace {
namespace
kernels
{
namespace
kernels
{
template
<
DeviceType
D
,
typename
T
>
template
<
DeviceType
D
,
typename
T
>
class
Conv2dFunctor
{
struct
Conv2dFunctor
{
public:
Conv2dFunctor
()
{}
Conv2dFunctor
(
const
index_t
*
input_shape
,
const
index_t
*
filter_shape
,
const
int
*
strides
,
const
Padding
padding
,
const
int
*
dilations
)
:
strides_
(
strides
),
paddings_
(
2
,
0
),
dilations_
(
dilations
)
{
CalPaddingSize
(
input_shape
,
filter_shape
,
dilations_
,
strides_
,
padding
,
paddings_
.
data
());
}
Conv2dFunctor
(
const
int
*
strides
,
Conv2dFunctor
(
const
int
*
strides
,
const
std
::
vector
<
int
>
&
paddings
,
const
std
::
vector
<
int
>
&
paddings
,
const
int
*
dilations
)
:
const
int
*
dilations
)
:
...
@@ -112,7 +101,6 @@ class Conv2dFunctor {
...
@@ -112,7 +101,6 @@ class Conv2dFunctor {
}
}
}
}
private:
const
int
*
strides_
;
// [stride_h, stride_w]
const
int
*
strides_
;
// [stride_h, stride_w]
std
::
vector
<
int
>
paddings_
;
// [padding_h, padding_w]
std
::
vector
<
int
>
paddings_
;
// [padding_h, padding_w]
const
int
*
dilations_
;
// [dilation_h, dilation_w]
const
int
*
dilations_
;
// [dilation_h, dilation_w]
...
...
mace/kernels/depthwise_conv2d.h
浏览文件 @
eebd7868
...
@@ -13,18 +13,8 @@ namespace mace {
...
@@ -13,18 +13,8 @@ namespace mace {
namespace
kernels
{
namespace
kernels
{
template
<
DeviceType
D
,
typename
T
>
template
<
DeviceType
D
,
typename
T
>
class
DepthwiseConv2dFunctor
{
struct
DepthwiseConv2dFunctor
{
public:
DepthwiseConv2dFunctor
()
{}
DepthwiseConv2dFunctor
(
const
index_t
*
input_shape
,
const
index_t
*
filter_shape
,
const
int
*
strides
,
const
Padding
padding
,
const
int
*
dilations
)
:
strides_
(
strides
),
paddings_
(
2
,
0
),
dilations_
(
dilations
)
{
CalPaddingSize
(
input_shape
,
filter_shape
,
dilations_
,
strides_
,
padding
,
paddings_
.
data
());
}
DepthwiseConv2dFunctor
(
const
int
*
strides
,
DepthwiseConv2dFunctor
(
const
int
*
strides
,
const
std
::
vector
<
int
>
&
paddings
,
const
std
::
vector
<
int
>
&
paddings
,
const
int
*
dilations
)
:
const
int
*
dilations
)
:
...
@@ -39,7 +29,6 @@ class DepthwiseConv2dFunctor {
...
@@ -39,7 +29,6 @@ class DepthwiseConv2dFunctor {
const
T
*
bias
,
// c_out
const
T
*
bias
,
// c_out
T
*
output
,
// NCHW
T
*
output
,
// NCHW
const
index_t
*
output_shape
)
{
const
index_t
*
output_shape
)
{
MACE_CHECK_NOTNULL
(
output
);
MACE_CHECK_NOTNULL
(
output
);
index_t
batch
=
output_shape
[
0
];
index_t
batch
=
output_shape
[
0
];
...
@@ -111,7 +100,7 @@ class DepthwiseConv2dFunctor {
...
@@ -111,7 +100,7 @@ class DepthwiseConv2dFunctor {
}
}
}
}
}
}
private:
const
int
*
strides_
;
// [stride_h, stride_w]
const
int
*
strides_
;
// [stride_h, stride_w]
std
::
vector
<
int
>
paddings_
;
// [padding_h, padding_w]
std
::
vector
<
int
>
paddings_
;
// [padding_h, padding_w]
const
int
*
dilations_
;
// [dilation_h, dilation_w]
const
int
*
dilations_
;
// [dilation_h, dilation_w]
...
...
mace/kernels/global_avg_pooling.h
浏览文件 @
eebd7868
...
@@ -11,10 +11,7 @@ namespace mace {
...
@@ -11,10 +11,7 @@ namespace mace {
namespace
kernels
{
namespace
kernels
{
template
<
DeviceType
D
,
typename
T
>
template
<
DeviceType
D
,
typename
T
>
class
GlobalAvgPoolingFunctor
{
struct
GlobalAvgPoolingFunctor
{
public:
GlobalAvgPoolingFunctor
()
{}
void
operator
()(
const
T
*
input
,
const
index_t
*
input_shape
,
T
*
output
)
{
void
operator
()(
const
T
*
input
,
const
index_t
*
input_shape
,
T
*
output
)
{
index_t
batch
=
input_shape
[
0
];
index_t
batch
=
input_shape
[
0
];
index_t
channels
=
input_shape
[
1
];
index_t
channels
=
input_shape
[
1
];
...
...
mace/kernels/pooling.h
浏览文件 @
eebd7868
...
@@ -18,8 +18,7 @@ enum PoolingType {
...
@@ -18,8 +18,7 @@ enum PoolingType {
namespace
kernels
{
namespace
kernels
{
template
<
DeviceType
D
,
typename
T
>
template
<
DeviceType
D
,
typename
T
>
class
PoolingFunctor
{
struct
PoolingFunctor
{
public:
PoolingFunctor
(
const
PoolingType
pooling_type
,
PoolingFunctor
(
const
PoolingType
pooling_type
,
const
int
*
kernels
,
const
int
*
kernels
,
const
int
*
strides
,
const
int
*
strides
,
...
@@ -114,7 +113,6 @@ class PoolingFunctor {
...
@@ -114,7 +113,6 @@ class PoolingFunctor {
}
}
}
}
private:
const
PoolingType
pooling_type_
;
const
PoolingType
pooling_type_
;
const
int
*
kernels_
;
const
int
*
kernels_
;
const
int
*
strides_
;
const
int
*
strides_
;
...
...
mace/ops/conv_2d.cc
浏览文件 @
eebd7868
...
@@ -6,10 +6,10 @@
...
@@ -6,10 +6,10 @@
namespace
mace
{
namespace
mace
{
REGISTER_CPU_OPERATOR
(
Conv2
d
,
Conv2dOp
<
DeviceType
::
CPU
,
float
>
);
REGISTER_CPU_OPERATOR
(
Conv2
D
,
Conv2dOp
<
DeviceType
::
CPU
,
float
>
);
#if __ARM_NEON
#if __ARM_NEON
REGISTER_NEON_OPERATOR
(
Conv2
d
,
Conv2dOp
<
DeviceType
::
NEON
,
float
>
);
REGISTER_NEON_OPERATOR
(
Conv2
D
,
Conv2dOp
<
DeviceType
::
NEON
,
float
>
);
#endif // __ARM_NEON
#endif // __ARM_NEON
}
// namespace mace
}
// namespace mace
mace/ops/conv_2d.h
浏览文件 @
eebd7868
...
@@ -17,12 +17,10 @@ template<DeviceType D, typename T>
...
@@ -17,12 +17,10 @@ template<DeviceType D, typename T>
class
Conv2dOp
:
public
ConvPool2dOpBase
<
D
,
T
>
{
class
Conv2dOp
:
public
ConvPool2dOpBase
<
D
,
T
>
{
public:
public:
Conv2dOp
(
const
OperatorDef
&
op_def
,
Workspace
*
ws
)
Conv2dOp
(
const
OperatorDef
&
op_def
,
Workspace
*
ws
)
:
ConvPool2dOpBase
<
D
,
T
>
(
op_def
,
ws
),
:
ConvPool2dOpBase
<
D
,
T
>
(
op_def
,
ws
)
{
functor_
(
this
->
Input
(
INPUT
)
->
shape
().
data
(),
functor_
.
strides_
=
this
->
strides_
.
data
();
this
->
Input
(
FILTER
)
->
shape
().
data
(),
functor_
.
dilations_
=
this
->
dilations_
.
data
();
this
->
strides_
.
data
(),
}
this
->
padding_
,
this
->
dilations_
.
data
())
{}
bool
Run
()
override
{
bool
Run
()
override
{
const
Tensor
*
input
=
this
->
Input
(
INPUT
);
const
Tensor
*
input
=
this
->
Input
(
INPUT
);
...
@@ -37,8 +35,13 @@ class Conv2dOp : public ConvPool2dOpBase<D, T> {
...
@@ -37,8 +35,13 @@ class Conv2dOp : public ConvPool2dOpBase<D, T> {
std
::
vector
<
index_t
>
output_shape
(
4
);
std
::
vector
<
index_t
>
output_shape
(
4
);
std
::
vector
<
int
>
paddings
(
2
);
std
::
vector
<
int
>
paddings
(
2
);
this
->
CalOutputSize
(
input
->
shape
().
data
(),
filter
->
shape
().
data
(),
output_shape
.
data
());
kernels
::
CalcPaddingAndOutputSize
(
input
->
shape
().
data
(),
filter
->
shape
().
data
(),
this
->
dilations_
.
data
(),
this
->
strides_
.
data
(),
this
->
padding_
,
output_shape
.
data
(),
paddings
.
data
());
output
->
Resize
(
output_shape
);
output
->
Resize
(
output_shape
);
functor_
.
paddings_
=
paddings
;
functor_
(
input
->
data
<
T
>
(),
input
->
shape
().
data
(),
filter
->
data
<
T
>
(),
functor_
(
input
->
data
<
T
>
(),
input
->
shape
().
data
(),
filter
->
data
<
T
>
(),
filter
->
shape
().
data
(),
bias_data
,
output
->
mutable_data
<
T
>
(),
filter
->
shape
().
data
(),
bias_data
,
output
->
mutable_data
<
T
>
(),
...
...
mace/ops/conv_2d_benchmark.cc
浏览文件 @
eebd7868
...
@@ -25,7 +25,7 @@ static void Conv2d(int iters,
...
@@ -25,7 +25,7 @@ static void Conv2d(int iters,
mace
::
testing
::
StopTiming
();
mace
::
testing
::
StopTiming
();
OpsTestNet
net
;
OpsTestNet
net
;
OpDefBuilder
(
"Conv2
d
"
,
"Conv2dTest"
)
OpDefBuilder
(
"Conv2
D
"
,
"Conv2dTest"
)
.
Input
(
"Input"
)
.
Input
(
"Input"
)
.
Input
(
"Filter"
)
.
Input
(
"Filter"
)
.
Input
(
"Bias"
)
.
Input
(
"Bias"
)
...
...
mace/ops/conv_2d_test.cc
浏览文件 @
eebd7868
...
@@ -13,7 +13,7 @@ class Conv2dOpTest : public OpsTestBase {};
...
@@ -13,7 +13,7 @@ class Conv2dOpTest : public OpsTestBase {};
TEST_F
(
Conv2dOpTest
,
Simple_VALID
)
{
TEST_F
(
Conv2dOpTest
,
Simple_VALID
)
{
// Construct graph
// Construct graph
auto
&
net
=
test_net
();
auto
&
net
=
test_net
();
OpDefBuilder
(
"Conv2
d
"
,
"Conv2dTest"
)
OpDefBuilder
(
"Conv2
D
"
,
"Conv2dTest"
)
.
Input
(
"Input"
)
.
Input
(
"Input"
)
.
Input
(
"Filter"
)
.
Input
(
"Filter"
)
.
Input
(
"Bias"
)
.
Input
(
"Bias"
)
...
@@ -47,7 +47,7 @@ TEST_F(Conv2dOpTest, Simple_VALID) {
...
@@ -47,7 +47,7 @@ TEST_F(Conv2dOpTest, Simple_VALID) {
TEST_F
(
Conv2dOpTest
,
Simple_SAME
)
{
TEST_F
(
Conv2dOpTest
,
Simple_SAME
)
{
// Construct graph
// Construct graph
auto
&
net
=
test_net
();
auto
&
net
=
test_net
();
OpDefBuilder
(
"Conv2
d
"
,
"Conv2dTest"
)
OpDefBuilder
(
"Conv2
D
"
,
"Conv2dTest"
)
.
Input
(
"Input"
)
.
Input
(
"Input"
)
.
Input
(
"Filter"
)
.
Input
(
"Filter"
)
.
Input
(
"Bias"
)
.
Input
(
"Bias"
)
...
@@ -83,7 +83,7 @@ TEST_F(Conv2dOpTest, Simple_SAME) {
...
@@ -83,7 +83,7 @@ TEST_F(Conv2dOpTest, Simple_SAME) {
TEST_F
(
Conv2dOpTest
,
Combined
)
{
TEST_F
(
Conv2dOpTest
,
Combined
)
{
// Construct graph
// Construct graph
auto
&
net
=
test_net
();
auto
&
net
=
test_net
();
OpDefBuilder
(
"Conv2
d"
,
"Conv2d
Test"
)
OpDefBuilder
(
"Conv2
D"
,
"Conv2D
Test"
)
.
Input
(
"Input"
)
.
Input
(
"Input"
)
.
Input
(
"Filter"
)
.
Input
(
"Filter"
)
.
Input
(
"Bias"
)
.
Input
(
"Bias"
)
...
@@ -121,7 +121,7 @@ TEST_F(Conv2dOpTest, Combined) {
...
@@ -121,7 +121,7 @@ TEST_F(Conv2dOpTest, Combined) {
TEST_F
(
Conv2dOpTest
,
Conv1x1
)
{
TEST_F
(
Conv2dOpTest
,
Conv1x1
)
{
// Construct graph
// Construct graph
auto
&
net
=
test_net
();
auto
&
net
=
test_net
();
OpDefBuilder
(
"Conv2
d"
,
"Conv2d
Test"
)
OpDefBuilder
(
"Conv2
D"
,
"Conv2D
Test"
)
.
Input
(
"Input"
)
.
Input
(
"Input"
)
.
Input
(
"Filter"
)
.
Input
(
"Filter"
)
.
Input
(
"Bias"
)
.
Input
(
"Bias"
)
...
@@ -179,7 +179,7 @@ TEST_F(Conv2dOpTest, ConvNxNS12) {
...
@@ -179,7 +179,7 @@ TEST_F(Conv2dOpTest, ConvNxNS12) {
index_t
output_channels
=
1
+
rand
()
%
10
;
index_t
output_channels
=
1
+
rand
()
%
10
;
// Construct graph
// Construct graph
auto
&
net
=
test_net
();
auto
&
net
=
test_net
();
OpDefBuilder
(
"Conv2
d
"
,
"Conv2dTest"
)
OpDefBuilder
(
"Conv2
D
"
,
"Conv2dTest"
)
.
Input
(
"Input"
)
.
Input
(
"Input"
)
.
Input
(
"Filter"
)
.
Input
(
"Filter"
)
.
Input
(
"Bias"
)
.
Input
(
"Bias"
)
...
...
mace/ops/conv_pool_2d_base.h
浏览文件 @
eebd7868
...
@@ -20,47 +20,6 @@ class ConvPool2dOpBase : public Operator<D, T> {
...
@@ -20,47 +20,6 @@ class ConvPool2dOpBase : public Operator<D, T> {
"padding"
,
static_cast
<
int
>
(
SAME
)))),
"padding"
,
static_cast
<
int
>
(
SAME
)))),
dilations_
(
OperatorBase
::
GetRepeatedArgument
<
int
>
(
"dilations"
,
{
1
,
1
}))
{}
dilations_
(
OperatorBase
::
GetRepeatedArgument
<
int
>
(
"dilations"
,
{
1
,
1
}))
{}
void
CalOutputSize
(
const
index_t
*
input_shape
,
// NCHW
const
index_t
*
filter_shape
,
// OIHW
index_t
*
output_shape
)
{
MACE_CHECK
(
dilations_
[
0
]
>
0
&&
dilations_
[
1
]
>
0
,
"Invalid dilations, must >= 1"
);
MACE_CHECK
((
dilations_
[
0
]
==
1
||
strides_
[
0
]
==
1
)
&&
(
dilations_
[
1
]
==
1
||
strides_
[
1
]
==
1
),
"If dilations > 1, strides should be 1"
);
MACE_CHECK_NOTNULL
(
output_shape
);
/*
* Convlution/pooling arithmetic:
* o = (i + 2 * p - k - (k - 1) * (d - 1)) / s + 1
* For details, see https://arxiv.org/pdf/1603.07285.pdf or
* http://deeplearning.net/software/theano/tutorial/conv_arithmetic.html
*/
index_t
output_height
=
0
,
output_width
=
0
;
switch
(
padding_
)
{
case
VALID
:
output_height
=
(
input_shape
[
2
]
-
(
filter_shape
[
2
]
-
1
)
*
dilations_
[
0
]
-
1
)
/
strides_
[
0
]
+
1
;
output_width
=
(
input_shape
[
3
]
-
(
filter_shape
[
3
]
-
1
)
*
dilations_
[
1
]
-
1
)
/
strides_
[
1
]
+
1
;
break
;
case
SAME
:
output_height
=
(
input_shape
[
2
]
-
1
)
/
strides_
[
0
]
+
1
;
output_width
=
(
input_shape
[
3
]
-
1
)
/
strides_
[
1
]
+
1
;
break
;
case
FULL
:
output_height
=
(
input_shape
[
2
]
+
(
filter_shape
[
2
]
-
1
)
*
dilations_
[
0
]
-
1
)
/
strides_
[
0
]
+
1
;
output_width
=
(
input_shape
[
3
]
+
(
filter_shape
[
3
]
-
1
)
*
dilations_
[
1
]
-
1
)
/
strides_
[
1
]
+
1
;
break
;
default:
MACE_CHECK
(
false
,
"Unsupported padding type: "
,
padding_
);
}
output_shape
[
0
]
=
input_shape
[
0
];
output_shape
[
1
]
=
filter_shape
[
0
];
output_shape
[
2
]
=
output_height
;
output_shape
[
3
]
=
output_width
;
}
protected:
protected:
std
::
vector
<
int
>
strides_
;
std
::
vector
<
int
>
strides_
;
Padding
padding_
;
Padding
padding_
;
...
...
mace/ops/depthwise_conv2d.h
浏览文件 @
eebd7868
...
@@ -18,10 +18,10 @@ template<DeviceType D, typename T>
...
@@ -18,10 +18,10 @@ template<DeviceType D, typename T>
class
DepthwiseConv2dOp
:
public
ConvPool2dOpBase
<
D
,
T
>
{
class
DepthwiseConv2dOp
:
public
ConvPool2dOpBase
<
D
,
T
>
{
public:
public:
DepthwiseConv2dOp
(
const
OperatorDef
&
op_def
,
Workspace
*
ws
)
DepthwiseConv2dOp
(
const
OperatorDef
&
op_def
,
Workspace
*
ws
)
:
ConvPool2dOpBase
<
D
,
T
>
(
op_def
,
ws
)
,
:
ConvPool2dOpBase
<
D
,
T
>
(
op_def
,
ws
)
{
functor_
(
this
->
Input
(
INPUT
)
->
shape
().
data
(),
functor_
.
strides_
=
this
->
strides_
.
data
();
this
->
Input
(
FILTER
)
->
shape
().
data
(),
functor_
.
dilations_
=
this
->
dilations_
.
data
();
this
->
strides_
.
data
(),
this
->
padding_
,
this
->
dilations_
.
data
())
{};
}
bool
Run
()
override
{
bool
Run
()
override
{
const
Tensor
*
input
=
this
->
Input
(
INPUT
);
const
Tensor
*
input
=
this
->
Input
(
INPUT
);
...
@@ -38,8 +38,14 @@ class DepthwiseConv2dOp : public ConvPool2dOpBase<D, T> {
...
@@ -38,8 +38,14 @@ class DepthwiseConv2dOp : public ConvPool2dOpBase<D, T> {
filter_shape
[
0
]
*=
filter_shape
[
1
];
filter_shape
[
0
]
*=
filter_shape
[
1
];
filter_shape
[
1
]
=
1
;
filter_shape
[
1
]
=
1
;
std
::
vector
<
index_t
>
output_shape
(
4
);
std
::
vector
<
index_t
>
output_shape
(
4
);
this
->
CalOutputSize
(
input
->
shape
().
data
(),
filter_shape
.
data
(),
output_shape
.
data
());
std
::
vector
<
int
>
paddings
(
2
);
kernels
::
CalcPaddingAndOutputSize
(
input
->
shape
().
data
(),
filter_shape
.
data
(),
this
->
dilations_
.
data
(),
this
->
strides_
.
data
(),
this
->
padding_
,
output_shape
.
data
(),
paddings
.
data
());
output
->
Resize
(
output_shape
);
output
->
Resize
(
output_shape
);
functor_
.
paddings_
=
paddings
;
functor_
(
input
->
data
<
T
>
(),
input
->
shape
().
data
(),
filter
->
data
<
T
>
(),
functor_
(
input
->
data
<
T
>
(),
input
->
shape
().
data
(),
filter
->
data
<
T
>
(),
filter_shape
.
data
(),
bias_data
,
output
->
mutable_data
<
T
>
(),
filter_shape
.
data
(),
bias_data
,
output
->
mutable_data
<
T
>
(),
...
...
mace/ops/depthwise_conv2d_test.cc
浏览文件 @
eebd7868
...
@@ -10,9 +10,10 @@ using namespace mace;
...
@@ -10,9 +10,10 @@ using namespace mace;
class
DepthwiseConv2dOpTest
:
public
OpsTestBase
{};
class
DepthwiseConv2dOpTest
:
public
OpsTestBase
{};
TEST_F
(
DepthwiseConv2dOpTest
,
Simple_VALID
)
{
TEST_F
(
DepthwiseConv2dOpTest
,
Simple_VALID
)
{
testing
::
internal
::
LogToStderr
();
// Construct graph
// Construct graph
auto
&
net
=
test_net
();
auto
&
net
=
test_net
();
OpDefBuilder
(
"DepthwiseConv2d"
,
"DepthwiseConv2
d
Test"
)
OpDefBuilder
(
"DepthwiseConv2d"
,
"DepthwiseConv2
D
Test"
)
.
Input
(
"Input"
)
.
Input
(
"Input"
)
.
Input
(
"Filter"
)
.
Input
(
"Filter"
)
.
Input
(
"Bias"
)
.
Input
(
"Bias"
)
...
@@ -35,7 +36,6 @@ TEST_F(DepthwiseConv2dOpTest, Simple_VALID) {
...
@@ -35,7 +36,6 @@ TEST_F(DepthwiseConv2dOpTest, Simple_VALID) {
3.0
f
,
7.0
f
,
11.0
f
,
15.0
f
,
3.0
f
,
7.0
f
,
11.0
f
,
15.0
f
,
4.0
f
,
8.0
f
,
12.0
f
,
16.0
f
});
4.0
f
,
8.0
f
,
12.0
f
,
16.0
f
});
net
.
AddInputFromArray
<
float
>
(
"Bias"
,
{
4
},
{
.1
f
,
.2
f
,
.3
f
,
.4
f
});
net
.
AddInputFromArray
<
float
>
(
"Bias"
,
{
4
},
{
.1
f
,
.2
f
,
.3
f
,
.4
f
});
// Run
// Run
net
.
RunOp
();
net
.
RunOp
();
...
@@ -61,7 +61,7 @@ TEST_F(DepthwiseConv2dOpTest, ConvNxNS12) {
...
@@ -61,7 +61,7 @@ TEST_F(DepthwiseConv2dOpTest, ConvNxNS12) {
index_t
multiplier
=
3
+
rand
()
%
10
;
index_t
multiplier
=
3
+
rand
()
%
10
;
// Construct graph
// Construct graph
auto
&
net
=
test_net
();
auto
&
net
=
test_net
();
OpDefBuilder
(
"DepthwiseConv2d"
,
"DepthwiseConv2
d
Test"
)
OpDefBuilder
(
"DepthwiseConv2d"
,
"DepthwiseConv2
D
Test"
)
.
Input
(
"Input"
)
.
Input
(
"Input"
)
.
Input
(
"Filter"
)
.
Input
(
"Filter"
)
.
Input
(
"Bias"
)
.
Input
(
"Bias"
)
...
...
mace/ops/depthwise_conv_2d_benchmark.cc
浏览文件 @
eebd7868
...
@@ -25,7 +25,7 @@ static void DepthwiseConv2d(int iters,
...
@@ -25,7 +25,7 @@ static void DepthwiseConv2d(int iters,
mace
::
testing
::
StopTiming
();
mace
::
testing
::
StopTiming
();
OpsTestNet
net
;
OpsTestNet
net
;
OpDefBuilder
(
"DepthwiseConv2
d"
,
"DepthwiseConv2d
Test"
)
OpDefBuilder
(
"DepthwiseConv2
D"
,
"DepthwiseConv2D
Test"
)
.
Input
(
"Input"
)
.
Input
(
"Input"
)
.
Input
(
"Filter"
)
.
Input
(
"Filter"
)
.
Input
(
"Bias"
)
.
Input
(
"Bias"
)
...
...
mace/ops/pooling.h
浏览文件 @
eebd7868
...
@@ -28,6 +28,7 @@ class PoolingOp : public ConvPool2dOpBase<D, T> {
...
@@ -28,6 +28,7 @@ class PoolingOp : public ConvPool2dOpBase<D, T> {
std
::
vector
<
index_t
>
output_shape
(
4
);
std
::
vector
<
index_t
>
output_shape
(
4
);
std
::
vector
<
int
>
paddings
(
2
);
std
::
vector
<
int
>
paddings
(
2
);
std
::
vector
<
index_t
>
filter_shape
(
4
);
std
::
vector
<
index_t
>
filter_shape
(
4
);
// TODO(chenghui): is it kind of a hack?
filter_shape
[
0
]
=
input
->
shape
()[
1
];
filter_shape
[
0
]
=
input
->
shape
()[
1
];
filter_shape
[
1
]
=
input
->
shape
()[
0
];
filter_shape
[
1
]
=
input
->
shape
()[
0
];
filter_shape
[
2
]
=
kernels_
[
0
];
filter_shape
[
2
]
=
kernels_
[
0
];
...
...
mace/python/tools/tf_converter.py
浏览文件 @
eebd7868
...
@@ -23,6 +23,7 @@ def main(unused_args):
...
@@ -23,6 +23,7 @@ def main(unused_args):
with
gfile
.
GFile
(
FLAGS
.
output
,
"wb"
)
as
f
:
with
gfile
.
GFile
(
FLAGS
.
output
,
"wb"
)
as
f
:
f
.
write
(
output_graph_def
.
SerializeToString
())
f
.
write
(
output_graph_def
.
SerializeToString
())
with
gfile
.
GFile
(
FLAGS
.
output
+
'_txt'
,
"wb"
)
as
f
:
with
gfile
.
GFile
(
FLAGS
.
output
+
'_txt'
,
"wb"
)
as
f
:
output_graph_def
.
ClearField
(
'tensors'
)
f
.
write
(
str
(
output_graph_def
))
f
.
write
(
str
(
output_graph_def
))
...
...
mace/python/tools/tf_converter_lib.py
浏览文件 @
eebd7868
from
mace.proto
import
mace_pb2
from
mace.proto
import
mace_pb2
import
tensorflow
as
tf
import
tensorflow
as
tf
import
numpy
as
np
padding_mode
=
{
padding_mode
=
{
'VALID'
:
0
,
'VALID'
:
0
,
...
@@ -24,11 +25,20 @@ def convert_ops(unresolved_ops, net_def):
...
@@ -24,11 +25,20 @@ def convert_ops(unresolved_ops, net_def):
tf_tensor
=
first_op
.
outputs
[
0
].
eval
()
tf_tensor
=
first_op
.
outputs
[
0
].
eval
()
tensor
=
net_def
.
tensors
.
add
()
tensor
=
net_def
.
tensors
.
add
()
tensor
.
name
=
first_op
.
outputs
[
0
].
name
tensor
.
name
=
first_op
.
outputs
[
0
].
name
tensor
.
dims
.
extend
(
tf_tensor
.
shape
)
# TODO: support other type than float
# TODO: support other type than float
tensor
.
data_type
=
mace_pb2
.
DT_FLOAT
tensor
.
data_type
=
mace_pb2
.
DT_FLOAT
shape
=
list
(
tf_tensor
.
shape
)
if
(
first_op
.
name
.
find
(
'pointwise_kernel'
)
!=
-
1
or
first_op
.
name
.
find
(
'depthwise_kernel'
)
!=
-
1
or
first_op
.
name
.
endswith
(
'weights'
)
or
first_op
.
name
.
endswith
(
'kernel'
))
\
and
first_op
.
outputs
[
0
].
consumers
()[
0
].
type
.
find
(
'Conv'
)
!=
-
1
:
tf_tensor
=
np
.
transpose
(
tf_tensor
,
axes
=
(
3
,
2
,
0
,
1
))
shape
=
[
shape
[
3
],
shape
[
2
],
shape
[
0
],
shape
[
1
]]
# print (tensor.name, shape)
tensor
.
dims
.
extend
(
shape
)
tensor
.
float_data
.
extend
(
tf_tensor
.
astype
(
float
).
flat
)
tensor
.
float_data
.
extend
(
tf_tensor
.
astype
(
float
).
flat
)
# net_def.tensors.extend([tensor])
elif
first_op
.
type
==
'Conv2D'
or
first_op
.
type
==
'DepthwiseConv2dNative'
:
elif
first_op
.
type
==
'Conv2D'
or
first_op
.
type
==
'DepthwiseConv2dNative'
:
op_def
=
net_def
.
op
.
add
()
op_def
=
net_def
.
op
.
add
()
op_def
.
name
=
first_op
.
name
op_def
.
name
=
first_op
.
name
...
@@ -43,10 +53,12 @@ def convert_ops(unresolved_ops, net_def):
...
@@ -43,10 +53,12 @@ def convert_ops(unresolved_ops, net_def):
padding_arg
.
i
=
padding_mode
[
first_op
.
get_attr
(
'padding'
)]
padding_arg
.
i
=
padding_mode
[
first_op
.
get_attr
(
'padding'
)]
strides_arg
=
op_def
.
arg
.
add
()
strides_arg
=
op_def
.
arg
.
add
()
strides_arg
.
name
=
'strides'
strides_arg
.
name
=
'strides'
strides_arg
.
ints
.
extend
(
first_op
.
get_attr
(
'strides'
))
strides_arg
.
ints
.
extend
(
first_op
.
get_attr
(
'strides'
)
[
2
:]
)
data_format_arg
=
op_def
.
arg
.
add
()
data_format_arg
=
op_def
.
arg
.
add
()
data_format_arg
.
name
=
'data_format'
data_format_arg
.
name
=
'data_format'
data_format_arg
.
s
=
first_op
.
get_attr
(
'data_format'
)
data_format_arg
.
s
=
first_op
.
get_attr
(
'data_format'
)
if
first_op
.
get_attr
(
'data_format'
)
!=
'NCHW'
:
raise
Exception
(
'only support NCHW now'
)
if
ops_count
>=
2
and
unresolved_ops
[
1
].
type
==
'BiasAdd'
:
if
ops_count
>=
2
and
unresolved_ops
[
1
].
type
==
'BiasAdd'
:
bias_add_op
=
unresolved_ops
[
1
]
bias_add_op
=
unresolved_ops
[
1
]
...
@@ -93,7 +105,7 @@ def convert_ops(unresolved_ops, net_def):
...
@@ -93,7 +105,7 @@ def convert_ops(unresolved_ops, net_def):
op_def
.
type
=
first_op
.
type
op_def
.
type
=
first_op
.
type
op_def
.
input
.
extend
([
input
.
name
for
input
in
first_op
.
inputs
])
op_def
.
input
.
extend
([
input
.
name
for
input
in
first_op
.
inputs
])
op_def
.
output
.
extend
([
output
.
name
for
output
in
first_op
.
outputs
])
op_def
.
output
.
extend
([
output
.
name
for
output
in
first_op
.
outputs
])
elif
first_op
.
type
==
'AvgPool'
:
elif
first_op
.
type
==
'AvgPool'
or
first_op
.
type
==
'MaxPool'
:
op_def
=
net_def
.
op
.
add
()
op_def
=
net_def
.
op
.
add
()
op_def
.
name
=
first_op
.
name
op_def
.
name
=
first_op
.
name
op_def
.
type
=
'Pooling'
op_def
.
type
=
'Pooling'
...
@@ -107,12 +119,15 @@ def convert_ops(unresolved_ops, net_def):
...
@@ -107,12 +119,15 @@ def convert_ops(unresolved_ops, net_def):
padding_arg
.
i
=
padding_mode
[
first_op
.
get_attr
(
'padding'
)]
padding_arg
.
i
=
padding_mode
[
first_op
.
get_attr
(
'padding'
)]
strides_arg
=
op_def
.
arg
.
add
()
strides_arg
=
op_def
.
arg
.
add
()
strides_arg
.
name
=
'strides'
strides_arg
.
name
=
'strides'
strides_arg
.
ints
.
extend
(
first_op
.
get_attr
(
'strides'
)[
1
:
-
1
])
strides_arg
.
ints
.
extend
(
first_op
.
get_attr
(
'strides'
)[
2
:])
strides_arg
.
name
=
'kernels'
kernels_arg
=
op_def
.
arg
.
add
()
strides_arg
.
ints
.
extend
(
first_op
.
get_attr
(
'ksize'
)[
1
:
-
1
])
kernels_arg
.
name
=
'kernels'
kernels_arg
.
ints
.
extend
(
first_op
.
get_attr
(
'ksize'
)[
2
:])
data_format_arg
=
op_def
.
arg
.
add
()
data_format_arg
=
op_def
.
arg
.
add
()
data_format_arg
.
name
=
'data_format'
data_format_arg
.
name
=
'data_format'
data_format_arg
.
s
=
first_op
.
get_attr
(
'data_format'
)
data_format_arg
.
s
=
first_op
.
get_attr
(
'data_format'
)
if
first_op
.
get_attr
(
'data_format'
)
!=
'NCHW'
:
raise
Exception
(
'only support NCHW now'
)
else
:
else
:
raise
Exception
(
'Unknown Op: '
+
first_op
.
name
)
raise
Exception
(
'Unknown Op: '
+
first_op
.
name
)
pass
pass
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录