Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
慢慢CG
Mace
提交
4ee448dd
Mace
项目概览
慢慢CG
/
Mace
与 Fork 源项目一致
Fork自
Xiaomi / Mace
通知
1
Star
0
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
DevOps
流水线
流水线任务
计划
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
Mace
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
DevOps
DevOps
流水线
流水线任务
计划
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
流水线任务
提交
Issue看板
提交
4ee448dd
编写于
1月 28, 2019
作者:
L
liuqi
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Feature: Add capability API for get performance of CPU, GPU.
上级
e103bc8b
变更
4
显示空白变更内容
内联
并排
Showing
4 changed file
with
531 addition
and
1 deletion
+531
-1
mace/libmace/capability.cc
mace/libmace/capability.cc
+424
-0
mace/public/mace.h
mace/public/mace.h
+38
-1
mace/test/BUILD
mace/test/BUILD
+32
-0
mace/test/device_capability_api_test.cc
mace/test/device_capability_api_test.cc
+37
-0
未找到文件。
mace/libmace/capability.cc
0 → 100644
浏览文件 @
4ee448dd
// Copyright 2019 The MACE Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <map>
#include <mutex> // NOLINT(build/c++11)
#include <string>
#include <vector>
#include "mace/ops/conv_pool_2d_util.h"
#include "mace/public/mace.h"
namespace
mace
{
namespace
capability
{
const
Capability
kCPUDefaultCapability
=
{
PerformanceInfo
{
1.
f
},
// float32_performance
PerformanceInfo
{
.6
f
},
// quantized8_performance tested with mobilenet-v2
true
,
// supported
};
const
Capability
kGPUDefaultCapability
=
{
PerformanceInfo
{
1.
f
},
// float32_performance
PerformanceInfo
{
-
1.
f
},
// quantized8_performance
false
,
// supported
};
const
Capability
kDSPDefaultCapability
=
{
PerformanceInfo
{
-
1.
f
},
// float32_performance
PerformanceInfo
{
1.
f
},
// quantized8_performance
false
,
// supported
};
class
BMNet
{
public:
static
BMNet
*
Get
();
MaceStatus
Run
(
DeviceType
device
,
float
*
exec_time
);
private:
BMNet
();
void
SetUp
();
std
::
string
AddExpandedConv
(
const
std
::
string
&
blk_name
,
const
std
::
string
&
input_name
,
const
std
::
vector
<
int
>
&
dw_strides
,
int
input_channel
,
int
output_channel
,
const
std
::
vector
<
std
::
vector
<
int
>>
&
feature_map_shapes
,
bool
has_expand
=
false
,
bool
has_residual
=
false
);
void
AddConv
(
const
std
::
string
&
conv_type
,
const
std
::
string
&
op_name
,
const
std
::
string
&
input_name
,
const
std
::
string
&
filter_name
,
const
std
::
string
&
output_name
,
const
std
::
vector
<
int
>
&
strides
,
const
std
::
vector
<
int64_t
>
&
filter_shape
,
const
std
::
vector
<
int64_t
>
&
output_shape
,
bool
has_relu6
=
true
,
bool
has_bias
=
true
,
int
padding_type
=
1
);
void
AddEltwise
(
const
std
::
string
&
op_name
,
const
std
::
vector
<
std
::
string
>
&
inputs
,
const
std
::
string
&
output
,
const
std
::
vector
<
int64_t
>
&
output_shape
,
int
type
=
0
);
void
AddIntArg
(
OperatorDef
*
op_def
,
const
std
::
string
&
name
,
int
value
);
void
AddIntsArg
(
OperatorDef
*
op_def
,
const
std
::
string
&
name
,
const
std
::
vector
<
int
>
&
values
);
void
AddStringArg
(
OperatorDef
*
op_def
,
const
std
::
string
&
name
,
const
std
::
string
&
value
);
void
AddFloatArg
(
OperatorDef
*
op_def
,
const
std
::
string
&
name
,
float
value
);
void
AddTensor
(
const
std
::
string
&
name
,
const
std
::
vector
<
int64_t
>
&
shape
,
int64_t
offset
,
int64_t
data_size
);
private:
// the size of model's weight, used as offset when set up model
int64_t
weight_size_
;
NetDef
net_
;
std
::
vector
<
unsigned
char
>
weight_
;
std
::
vector
<
std
::
string
>
input_names_
;
std
::
vector
<
std
::
vector
<
int64_t
>>
input_shapes_
;
std
::
vector
<
std
::
string
>
output_names_
;
std
::
vector
<
std
::
vector
<
int64_t
>>
output_shapes_
;
std
::
mutex
run_mutex_
;
};
BMNet
*
BMNet
::
Get
()
{
static
BMNet
net
;
return
&
net
;
}
BMNet
::
BMNet
()
:
weight_size_
(
0
)
{
SetUp
();
}
void
BMNet
::
SetUp
()
{
// Use subnet of mobilenet-v2 as the workload
input_names_
.
push_back
(
"Input"
);
input_shapes_
.
push_back
({
1
,
224
,
224
,
3
});
std
::
string
blk_name
=
"Conv"
;
std
::
string
op_output_name
=
blk_name
+
"/Conv2D"
;
AddConv
(
"Conv2D"
,
blk_name
+
"/Conv2D"
,
"Input"
,
blk_name
+
"/filter"
,
op_output_name
,
{
2
,
2
},
{
32
,
3
,
3
,
3
},
{
1
,
112
,
112
,
32
});
op_output_name
=
AddExpandedConv
(
"ExpandedConv"
,
op_output_name
,
{
1
,
1
},
32
,
16
,
{{
112
,
112
},
{
112
,
112
}});
op_output_name
=
AddExpandedConv
(
"ExpandedConv1"
,
op_output_name
,
{
2
,
2
},
16
,
24
,
{{
112
,
112
},
{
56
,
56
},
{
56
,
56
}},
true
);
op_output_name
=
AddExpandedConv
(
"ExpandedConv2"
,
op_output_name
,
{
1
,
1
},
24
,
24
,
{{
56
,
56
},
{
56
,
56
},
{
56
,
56
}},
true
,
true
);
op_output_name
=
AddExpandedConv
(
"ExpandedConv3"
,
op_output_name
,
{
2
,
2
},
24
,
32
,
{{
56
,
56
},
{
28
,
28
},
{
28
,
28
}},
true
);
op_output_name
=
AddExpandedConv
(
"ExpandedConv4"
,
op_output_name
,
{
1
,
1
},
32
,
32
,
{{
28
,
28
},
{
28
,
28
},
{
28
,
28
}},
true
,
true
);
op_output_name
=
AddExpandedConv
(
"ExpandedConv5"
,
op_output_name
,
{
1
,
1
},
32
,
32
,
{{
28
,
28
},
{
28
,
28
},
{
28
,
28
}},
true
,
true
);
op_output_name
=
AddExpandedConv
(
"ExpandedConv6"
,
op_output_name
,
{
2
,
2
},
32
,
64
,
{{
28
,
28
},
{
14
,
14
},
{
14
,
14
}},
true
);
op_output_name
=
AddExpandedConv
(
"ExpandedConv7"
,
op_output_name
,
{
1
,
1
},
64
,
64
,
{{
14
,
14
},
{
14
,
14
},
{
14
,
14
}},
true
,
true
);
output_names_
.
push_back
(
op_output_name
);
output_shapes_
.
push_back
({
1
,
14
,
14
,
64
});
// Add input and output information
for
(
size_t
i
=
0
;
i
<
input_names_
.
size
();
++
i
)
{
InputInfo
*
info
=
net_
.
add_input_info
();
info
->
set_name
(
input_names_
[
i
]);
for
(
auto
d
:
input_shapes_
[
i
])
{
info
->
add_dims
(
static_cast
<
int
>
(
d
));
}
}
for
(
auto
output_name
:
output_names_
)
{
OutputInfo
*
info
=
net_
.
add_output_info
();
info
->
set_name
(
output_name
);
}
// allocate weight data
weight_
.
resize
(
weight_size_
,
0
);
}
void
BMNet
::
AddIntArg
(
mace
::
OperatorDef
*
op_def
,
const
std
::
string
&
name
,
int
value
)
{
auto
arg
=
op_def
->
add_arg
();
arg
->
set_name
(
name
);
arg
->
set_i
(
value
);
}
void
BMNet
::
AddIntsArg
(
mace
::
OperatorDef
*
op_def
,
const
std
::
string
&
name
,
const
std
::
vector
<
int
>
&
values
)
{
auto
arg
=
op_def
->
add_arg
();
arg
->
set_name
(
name
);
for
(
auto
value
:
values
)
{
arg
->
add_ints
(
value
);
}
}
void
BMNet
::
AddStringArg
(
mace
::
OperatorDef
*
op_def
,
const
std
::
string
&
name
,
const
std
::
string
&
value
)
{
auto
arg
=
op_def
->
add_arg
();
arg
->
set_name
(
name
);
arg
->
set_s
(
value
);
}
void
BMNet
::
AddFloatArg
(
mace
::
OperatorDef
*
op_def
,
const
std
::
string
&
name
,
float
value
)
{
auto
arg
=
op_def
->
add_arg
();
arg
->
set_name
(
name
);
arg
->
set_f
(
value
);
}
void
BMNet
::
AddTensor
(
const
std
::
string
&
name
,
const
std
::
vector
<
int64_t
>
&
shape
,
int64_t
offset
,
int64_t
data_size
)
{
ConstTensor
*
tensor_ptr
=
net_
.
add_tensors
();
tensor_ptr
->
set_name
(
name
);
tensor_ptr
->
mutable_dims
()
->
Reserve
(
shape
.
size
());
for
(
auto
dim
:
shape
)
{
tensor_ptr
->
add_dims
(
dim
);
}
tensor_ptr
->
set_offset
(
offset
);
tensor_ptr
->
set_data_size
(
data_size
);
tensor_ptr
->
set_data_type
(
DT_HALF
);
}
void
BMNet
::
AddConv
(
const
std
::
string
&
conv_type
,
const
std
::
string
&
op_name
,
const
std
::
string
&
input_name
,
const
std
::
string
&
filter_name
,
const
std
::
string
&
output_name
,
const
std
::
vector
<
int
>
&
strides
,
const
std
::
vector
<
int64_t
>
&
filter_shape
,
const
std
::
vector
<
int64_t
>
&
output_shape
,
bool
has_relu6
,
bool
has_bias
,
int
padding_type
)
{
const
int
kAlignPad
=
4
;
auto
op_def
=
net_
.
add_op
();
op_def
->
set_name
(
op_name
);
op_def
->
set_type
(
conv_type
);
op_def
->
add_input
(
input_name
);
op_def
->
add_input
(
filter_name
);
int64_t
filter_size
=
std
::
accumulate
(
filter_shape
.
begin
(),
filter_shape
.
end
(),
1
,
std
::
multiplies
<
int64_t
>
());
AddTensor
(
filter_name
,
filter_shape
,
weight_size_
,
filter_size
);
weight_size_
+=
filter_size
*
sizeof
(
half
);
if
(
weight_size_
%
kAlignPad
!=
0
)
{
weight_size_
+=
kAlignPad
-
(
weight_size_
%
kAlignPad
);
}
if
(
has_bias
)
{
std
::
string
bias_tensor_name
=
op_name
+
"_bias:0"
;
op_def
->
add_input
(
bias_tensor_name
);
AddTensor
(
bias_tensor_name
,
{
output_shape
[
3
]},
weight_size_
,
output_shape
[
3
]);
weight_size_
+=
output_shape
[
3
]
*
sizeof
(
half
);
if
(
weight_size_
%
kAlignPad
!=
0
)
{
weight_size_
+=
kAlignPad
-
(
weight_size_
%
kAlignPad
);
}
}
op_def
->
add_output
(
output_name
);
AddIntsArg
(
op_def
,
"strides"
,
strides
);
AddIntArg
(
op_def
,
"padding"
,
padding_type
);
AddIntArg
(
op_def
,
"T"
,
DT_HALF
);
AddIntArg
(
op_def
,
"data_format"
,
1
);
if
(
has_relu6
)
{
AddStringArg
(
op_def
,
"activation"
,
"RELUX"
);
AddFloatArg
(
op_def
,
"max_limit"
,
6
);
}
OutputShape
*
shape
=
op_def
->
add_output_shape
();
for
(
auto
dim
:
output_shape
)
{
shape
->
add_dims
(
dim
);
}
}
void
BMNet
::
AddEltwise
(
const
std
::
string
&
op_name
,
const
std
::
vector
<
std
::
string
>
&
inputs
,
const
std
::
string
&
output
,
const
std
::
vector
<
int64_t
>
&
output_shape
,
int
type
)
{
auto
op_def
=
net_
.
add_op
();
op_def
->
set_name
(
op_name
);
op_def
->
set_type
(
"Eltwise"
);
for
(
auto
input
:
inputs
)
{
op_def
->
add_input
(
input
);
}
op_def
->
add_output
(
output
);
AddIntArg
(
op_def
,
"type"
,
type
);
AddIntArg
(
op_def
,
"T"
,
DT_HALF
);
AddIntArg
(
op_def
,
"data_format"
,
1
);
OutputShape
*
shape
=
op_def
->
add_output_shape
();
for
(
auto
dim
:
output_shape
)
{
shape
->
add_dims
(
dim
);
}
}
std
::
string
BMNet
::
AddExpandedConv
(
const
std
::
string
&
blk_name
,
const
std
::
string
&
input_name
,
const
std
::
vector
<
int
>
&
dw_strides
,
int
input_channel
,
int
output_channel
,
const
std
::
vector
<
std
::
vector
<
int
>>
&
feature_map_shapes
,
bool
has_expand
,
bool
has_residual
)
{
int
expand_scale
=
6
;
std
::
string
middle_input_name
=
input_name
;
std
::
string
middle_output_name
;
std
::
string
filter_name
;
int
expand_out_channel
=
input_channel
;
int
feature_map_idx
=
0
;
if
(
has_expand
)
{
std
::
string
expand_conv2d_name
=
blk_name
+
"/expand/Conv2D"
;
filter_name
=
expand_conv2d_name
+
"/filter"
;
middle_output_name
=
expand_conv2d_name
+
":0"
;
expand_out_channel
=
input_channel
*
expand_scale
;
AddConv
(
"Conv2D"
,
expand_conv2d_name
,
middle_input_name
,
filter_name
,
middle_output_name
,
{
1
,
1
},
{
expand_out_channel
,
input_channel
,
1
,
1
},
{
1
,
feature_map_shapes
[
feature_map_idx
][
0
],
feature_map_shapes
[
feature_map_idx
][
1
],
expand_out_channel
});
feature_map_idx
+=
1
;
middle_input_name
=
middle_output_name
;
}
std
::
string
dw_conv2d_name
=
blk_name
+
"/depthwise/depthwise"
;
filter_name
=
dw_conv2d_name
+
"/filter"
;
middle_output_name
=
dw_conv2d_name
+
":0"
;
AddConv
(
"DepthwiseConv2d"
,
dw_conv2d_name
,
middle_input_name
,
filter_name
,
middle_output_name
,
dw_strides
,
{
1
,
expand_out_channel
,
3
,
3
},
{
1
,
feature_map_shapes
[
feature_map_idx
][
0
],
feature_map_shapes
[
feature_map_idx
][
1
],
expand_out_channel
});
feature_map_idx
+=
1
;
middle_input_name
=
middle_output_name
;
std
::
string
project_conv2d_name
=
blk_name
+
"/project/conv2d"
;
filter_name
=
project_conv2d_name
+
"/filter"
;
middle_output_name
=
project_conv2d_name
+
":0"
;
AddConv
(
"Conv2D"
,
project_conv2d_name
,
middle_input_name
,
filter_name
,
middle_output_name
,
{
1
,
1
},
{
output_channel
,
expand_out_channel
,
1
,
1
},
{
1
,
feature_map_shapes
[
feature_map_idx
][
0
],
feature_map_shapes
[
feature_map_idx
][
1
],
output_channel
},
false
);
middle_input_name
=
middle_output_name
;
if
(
has_residual
)
{
std
::
string
eltwise_name
=
blk_name
+
"/add"
;
middle_output_name
=
eltwise_name
+
":0"
;
AddEltwise
(
eltwise_name
,
{
input_name
,
middle_input_name
},
middle_output_name
,
{
1
,
feature_map_shapes
[
2
][
0
],
feature_map_shapes
[
2
][
1
],
output_channel
});
}
return
middle_output_name
;
}
MaceStatus
BMNet
::
Run
(
DeviceType
device
,
float
*
exec_time
)
{
std
::
lock_guard
<
std
::
mutex
>
lock
(
run_mutex_
);
MaceStatus
status
;
MaceEngineConfig
config
(
device
);
config
.
SetCPUThreadPolicy
(
-
1
,
CPUAffinityPolicy
::
AFFINITY_BIG_ONLY
);
if
(
device
==
DeviceType
::
GPU
)
{
config
.
SetGPUHints
(
GPUPerfHint
::
PERF_HIGH
,
GPUPriorityHint
::
PRIORITY_LOW
);
}
MaceEngine
engine
(
config
);
status
=
engine
.
Init
(
&
net_
,
input_names_
,
output_names_
,
weight_
.
data
());
if
(
status
!=
MaceStatus
::
MACE_SUCCESS
)
{
return
status
;
}
const
size_t
input_count
=
input_names_
.
size
();
const
size_t
output_count
=
output_names_
.
size
();
std
::
map
<
std
::
string
,
mace
::
MaceTensor
>
inputs
;
std
::
map
<
std
::
string
,
mace
::
MaceTensor
>
outputs
;
for
(
size_t
i
=
0
;
i
<
input_count
;
++
i
)
{
int64_t
input_size
=
std
::
accumulate
(
input_shapes_
[
i
].
begin
(),
input_shapes_
[
i
].
end
(),
1
,
std
::
multiplies
<
int64_t
>
());
auto
buffer_in
=
std
::
shared_ptr
<
float
>
(
new
float
[
input_size
],
std
::
default_delete
<
float
[]
>
());
inputs
[
input_names_
[
i
]]
=
mace
::
MaceTensor
(
input_shapes_
[
i
],
buffer_in
);
}
for
(
size_t
i
=
0
;
i
<
output_count
;
++
i
)
{
int64_t
output_size
=
std
::
accumulate
(
output_shapes_
[
i
].
begin
(),
output_shapes_
[
i
].
end
(),
1
,
std
::
multiplies
<
int64_t
>
());
auto
buffer_out
=
std
::
shared_ptr
<
float
>
(
new
float
[
output_size
],
std
::
default_delete
<
float
[]
>
());
outputs
[
output_names_
[
i
]]
=
mace
::
MaceTensor
(
output_shapes_
[
i
],
buffer_out
);
}
// warm up
status
=
engine
.
Run
(
inputs
,
&
outputs
);
if
(
status
!=
MaceStatus
::
MACE_SUCCESS
)
{
return
status
;
}
int
round
=
10
;
int64_t
duration
=
0
;
for
(
int
i
=
0
;
i
<
round
;
++
i
)
{
int64_t
start
=
NowMicros
();
status
=
engine
.
Run
(
inputs
,
&
outputs
);
duration
+=
NowMicros
()
-
start
;
if
(
status
!=
MaceStatus
::
MACE_SUCCESS
)
{
return
status
;
}
}
*
exec_time
=
duration
/
1000.0
f
/
round
;
return
MaceStatus
::
MACE_SUCCESS
;
}
}
// namespace capability
Capability
GetCapability
(
DeviceType
device_type
,
float
cpu_float32_exec_time
)
{
Capability
capability
;
if
(
device_type
==
DeviceType
::
HEXAGON
)
{
return
capability
::
kDSPDefaultCapability
;
}
else
if
(
device_type
==
DeviceType
::
CPU
)
{
capability
=
capability
::
kCPUDefaultCapability
;
}
else
if
(
device_type
==
DeviceType
::
GPU
)
{
capability
=
capability
::
kGPUDefaultCapability
;
}
else
{
LOG
(
FATAL
)
<<
"No support the device "
<<
device_type
;
}
capability
::
BMNet
*
net
=
capability
::
BMNet
::
Get
();
float
exec_time
;
MaceStatus
status
=
net
->
Run
(
device_type
,
&
exec_time
);
if
(
status
==
MaceStatus
::
MACE_SUCCESS
)
{
capability
.
float32_performance
.
exec_time
=
exec_time
/
cpu_float32_exec_time
;
capability
.
supported
=
true
;
}
else
{
capability
.
supported
=
false
;
}
return
capability
;
}
}
// namespace mace
mace/public/mace.h
浏览文件 @
4ee448dd
...
@@ -100,7 +100,44 @@ class RunMetadata {
...
@@ -100,7 +100,44 @@ class RunMetadata {
std
::
vector
<
OperatorStats
>
op_stats
;
std
::
vector
<
OperatorStats
>
op_stats
;
};
};
const
char
*
MaceVersion
();
/// Consistent with Android NNAPI
struct
PerformanceInfo
{
// Time of executing some workload.
// negative value for unsupported.
float
exec_time
;
};
struct
Capability
{
// Performance of running with float32 data type
// run time of the workload for CPU device,
// ratio of run time to execute same workload compared to the time the CPU
// execute same workload.
PerformanceInfo
float32_performance
;
// Performance of running with quantized-8 data type
// ratio compared with float32_performance
PerformanceInfo
quantized8_performance
;
// support or not
bool
supported
;
};
/// Get Devices Capacity
///
/// The float32_performance of CPU and GPU is tested using the workload of
/// first 8 layer of mobilenet-v2 which contain Conv(1x1, 3x3),
/// DepthwiseConv(3x3) and ElementWise Ops.
/// The quantized8_performance is just a arbitrary value tested
/// using mobilenet-v2 offline
/// Actually, It's hard to test the precise performance, the result could be
/// more accurate when your model is like with mobilenet-v2, otherwise the
/// value is just a reference.
///
/// \return capability of the device
MACE_API
Capability
GetCapability
(
DeviceType
device_type
,
float
cpu_float32_exec_time
=
1.
f
);
MACE_API
const
char
*
MaceVersion
();
class
MaceStatus
{
class
MaceStatus
{
public:
public:
...
...
mace/test/BUILD
浏览文件 @
4ee448dd
...
@@ -120,3 +120,35 @@ cc_test(
...
@@ -120,3 +120,35 @@ cc_test(
"@gtest//:gtest_main"
,
"@gtest//:gtest_main"
,
],
],
)
)
cc_test
(
name
=
"device_capability_api_test"
,
testonly
=
1
,
srcs
=
[
"device_capability_api_test.cc"
],
copts
=
[
"-Werror"
,
"-Wextra"
,
"-Wno-missing-field-initializers"
,
]
+
if_openmp_enabled
([
"-fopenmp"
])
+
if_neon_enabled
([
"-DMACE_ENABLE_NEON"
,
])
+
if_android_armv7
([
"-mfpu=neon"
,
])
+
if_android_armv7
([
"-mfloat-abi=softfp"
,
])
+
if_opencl_enabled
([
"-DMACE_ENABLE_OPENCL"
,
])
+
if_quantize_enabled
([
"-DMACE_ENABLE_QUANTIZE"
,
])
+
if_hexagon_enabled
([
"-DMACE_ENABLE_HEXAGON"
,
]),
linkopts
=
[
"-fopenmp"
],
linkstatic
=
1
,
deps
=
[
"//mace/ops:test"
,
"//mace/libmace:libmace"
,
"@gtest//:gtest_main"
,
],
)
mace/test/device_capability_api_test.cc
0 → 100644
浏览文件 @
4ee448dd
// Copyright 2018 The MACE Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "mace/ops/ops_test_util.h"
namespace
mace
{
namespace
test
{
TEST
(
MaceDeviceCapalibityAPITest
,
Capability
)
{
auto
cpu_capability
=
GetCapability
(
DeviceType
::
CPU
);
LOG
(
INFO
)
<<
"CPU: float32 "
<<
cpu_capability
.
float32_performance
.
exec_time
<<
" vs quantized8 "
<<
cpu_capability
.
quantized8_performance
.
exec_time
;
auto
gpu_capability
=
GetCapability
(
DeviceType
::
GPU
,
cpu_capability
.
float32_performance
.
exec_time
);
if
(
gpu_capability
.
supported
)
{
LOG
(
INFO
)
<<
"GPU: float32 "
<<
gpu_capability
.
float32_performance
.
exec_time
<<
" vs quantized8 "
<<
gpu_capability
.
quantized8_performance
.
exec_time
;
}
}
}
// namespace test
}
// namespace mace
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录