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Abstract— This paper presents a balance control technique
for a novel wheel-legged robot. We first derive a dynamic
model of the robot and then apply a linear feedback controller
based on output regulation and linear quadratic regulator
(LQR) methods to maintain the standing of the robot on
the ground without moving backward and forward mightily.
To take into account nonlinearities of the model and obtain
a large domain of stability, a nonlinear controller based on
the interconnection and damping assignment - passivity-based
control (IDA-PBC) method is exploited to control the robot in
more general scenarios. Physical experiments are performed
with various control tasks. Experimental results demonstrate
that the proposed linear output regulator can maintain the
standing of the robot, while the proposed nonlinear controller
can balance the robot under an initial starting angle far away
from the equilibrium point, or under a changing robot height.

I. INTRODUCTION

Wheel-legged robots [1] [2] combine the advantages of
wheeled robots and legged robots, that possess the high
energy-efficiency of wheels and the strong adaptability to
overcome uneven terrain and obstacles using legs. Bipedal
wheeled robots arouse our interests because of their agility
and potential opportunities in the practical applications.
However, they are unstable systems with only two contact
points between the ground and the wheels/legs. Besides,
the possible nonlinearities and uncertainties, such as un-
known equilibrium state, nonlinear system model and posture
change (height change), make the balance control more
challenging. In this work, we control a novel wheel-legged
robot in Fig. 1 by both linear and nonlinear controllers, and
the performance is tested by a variety of experiments.

A. Related Work

Bipedal wheeled robots are unstable underactuated sys-
tems. The existing balancing control methods include using
the traditional linearized model [3], or whole-body dynamics
control [4], in the case where the robot keeps a constant
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(a) Low height (b) High height

Fig. 1: The novel wheel-legged robot

height. A milestone of the development of bipedal wheeled
robot is Handle [1] by Boston Dynamics. Handle can finish a
few tasks like truck unloading, order building and palletizing
while keeping balanced. Unfortunately, little technical detail
has been released. Recently, ETH Ascento and its LQR-
assisted control are described in [2] and [5]. Its whole-body
control scheme shows robustness to disturbances by active
compliance to uneven terrain.

A practical difficulty of these two-wheeled robots is that
the equilibrium is often not the upward direction due to the
uneven mass distribution of the robot or the installation error
of the sensors. Therefore, it is hard to provide a reference
position for the balance control. As a consequence, keeping
the robot standstill is formidable. In this case, output regula-
tion theory is an appropriate tool to force the system output
to a desired state under unknown disturbances; see, e.g., [6],
[7] and theoretical applications to robot manipulators [8],
[9], but it is less common to see practical applications in
mobile robotic systems. Besides, nonlinear output regulation
is challenging because regulator equations are nonlinear
partial differential equations (PDEs) [10].

Apart from the problem mentioned above, IDA-PBC
is a constructive nonlinear feedback technique physically-
inspired by energy-shaping and damping injection [11]. We
have recently applied this technique to balance an unstable
autonomous bicycle [12]. An advantage of this nonlinear
technique is that controller parameters have a clear physical
meaning thus making the implementation and tuning easier.
However, the same challenge lies in solving nonlinear PDEs.
The PDE problem is simplified for systems with underactu-
ation relative degree one [13], [14]. Furthermore, the PDEs
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are avoided in [15] at the cost of tuning more parameters.
The IDA-PBC with integral action can deal with unknown
disturbance for a robot manipulator on a flexible base [16],
but there is still a gap between theory and practice.

B. Contribution

Our contributions are as follows.

Major contribution: To balance the novel-designed wheel-
legged robot, the nonlinear controller IDA-PBC for the po-
sition regulation problem in the past literature is redesigned
for the velocity tracking problem. The nonlinear controller
is implemented in practice, and various experiments validate
the stability and robustness of the controller.

Minor contribution: For the problem when the equilibrium
pitch angle is unknown, linear output regulation is applied to
regulate the robot stand still, and is tested in the experiment.

II. DYNAMIC MODEL
A. Mechanical Structure

The novel wheel-legged robot in Fig.1 is composed of one
floating-based body, two legs ending with active wheels and
one balancing tail ending with passive wheel. The coordinate
of the robot system is shown in Fig.la. A core innovation of
the mechanical structure is the planar parallel mechanism
at two legs. The parallel-type leg has five revolutional
joints, which has two translational degrees-of-freedom along
with longitudinal (z) and vertical (z) direction, respectively.
Compared with serial mechanisms, this parallel mechanism
presents the characteristics of compact structure, high stiff-
ness and high load capacity. As a result, the robot may jump
higher and overcome obstacles flexibly.

B. Simplification and Assumption

In this work, we focus on the balance control of the
robot in the longitudinal direction. We control the motors
on wheels to balance the robot. The four motors at the body
frame is used to change the height of the robot (see Fig.la
and Fig.1b). The balancing tail is fixed under the floating-
based body. The foot motors are capable to stabilize the robot
individually, so the state-of-art whole-boy control for all the
motors is not considered to avoid redundant complexity.

When the robot runs along the x direction, we assume it
is symmetric on y (lateral) direction. In addition, the weight
of the robot is mainly concentrated in the body and wheels.
Henceforth, the robot can be approximated as an inverted
pendulum on a cart (IPC) of which the dynamics is

(M + m)i + ml cos(0)8 — misin(0)8* = u,

mi cos & + mi?6 — mgl sin(6) = 0,

(D

where M and m are the point mass concentrated at the tip of
the rod and the mass of the cart, corresponding to the upper
part and the wheels of the robot respectively; [ is the length
of the pendulum, corresponding to the height of the robot. ¢
is the pitch angle; x is the displacement along x direction,
and wu is the force on the cart. The relationship between u
and the torque applied to the wheel can be established easily.

Different from the past literature on IPC, firstly, the length
of the pendulum is variant, since the robot changes its
height while running. Secondly, the initial state is outside
the feasibility region of the linear controller, since the robot
start from a large pitch angle far away from the equilibrium.
C. Linearized Model

The IPC (1) is linearized around upward equilibrium as
£ = A¢ + Bu, 2)

where & = [0 6  &]” is the state, and

0 1 0 O 0
M+m 1
_| 5579 0 0 0 _ | —mm
A=1 % 00 1| BT 0
—%g 0 0 O ﬁ

D. Partial-Feedback Linearization based Model

We consider the partial feedback linearization model [17].
In (1), let

.2

. 0)+ M

w=mi (i’ cos(0) sin(8) — sin(0)§2 + W”) ,

(3

where v is the control action from the outer loop controller,
and then the partial feedback-linearized model is

sin(f) — = cos(Q)v

0= ;

(4a)
(4b)

R~

ji =
III. LINEAR OUTPUT REGULATION

A. Problem Formulation

In previous sections, the pitch angle 6 is an ideal value that
fits with the mathematical model. However, the measurement
of 6 by the inertial measurement unit (IMU) may deviate
from the true value, and it can be expressed as

6=0+d,

where d is the difference. As a result,with respect to the
measurement from IMU, the equilibrium of the robot is at
0 = d. In other words, (2) is equivalent to

€ — Aé + Bu+ Eqd, 5)

where € = [0 6 = &7 (note that § = 0), and E; =

[0 —25H%g 0 fi]

Making the robot standstill is equivalent to regulating 0 —
0 and = — 0. Alternatively, we regulate the output to zero,

y = m e ©)

€T

0 1 0 O
WhereC:{0 0 0 1}.
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B. Observer Design

We use the well-known Luenberger observer to estimate
the disturbance d. It is nontrivial because d varies when the
robot changes its height. Here, we choose 6 and x as the
measurement outputs

0 -
w-]l] -cue »
1 0 0O
where C,,, = 00 1 ol

Then, the observer system is expressed as
(= A+ Bu+ L (yn - CQ), (8)

~

6 % & d)T is the state of the observer, A=

)

where ¢ = [

[z(;l 11(7)(@’ B =[B” 0]” and C = [C,, 0]. It is clear that

(K, 6’) is observable. The matrix L is the observer gain.

)

C. Output Regulation

In this work, we control the robot to stand still by linear
output regulation controllers. The core methodology of linear
output regulation is to introduce the disturbance to the state
(e.g. n to 0). Using the new state, after taking the static gain
controller, the state-space of the closed-loop error system
is valid. Then, by making the state matrix Hurwitz, the
output error is proved to decay asymptotically. In addition,
the unknown disturbance can be estimated by an observer.

Following the procedure in [6], the linear controller

u=KC, ©))

is considered, where K = [k, k4] is the tunable gain matrix.
For the system in (5), (6), the output # — 0 and & — 0 if
and only if there exists and a unique vector X, such that

[ a BK E,
~ |zo, §+§KL5}X“+[O}7 (10a)
0=[C 0]X..

0

(10b)

These two equations imply the stability of the closed-loop
error system. Refer to [6] for detailed derivations.

IV. ENERGY AND PASSIVITY BASED CONTROL
A. IDA-PBC for position regulation

The main objective of the PBC for position regulation
is to shape the potential energy of the system, such that
the equilibrium point of the closed-loop system corresponds
to the minimum potential energy. Hence, the system can
be stabilized to its equilibrium point. However, for under-
actuated system, its potential energy is often coupled with
kinetic energy. As a result, the kinetic energy of the closed-
loop system should be designed as well.

For the system (4), the total energy can be expressed in
Hamiltonian form as H(g,p) = ip"M;'(q)p + V(q).
where ¢ = [0 z]”, the inertia matrix M; = [1 0; 0 1],
thus p = [# #]7, and potential energy V = cos(f)g/l. In
order to regulate the closed-loop system to its equilibrium,

p = [0 0], g = [0 2*]T, where z* is the target position.
The target energy of the closed-loop system can be designed
as Hy(q,p) = 3p"M; " (q)p + Va(q). If V; is minimal
at ¢¢ = [0 z*]T with M, being positive-definite in a
neighborhood of g*, then by considering H,; as the Lyapunov
function, it can be proved that the equilibrium g* is stable

with the neighborhood being the domain of attraction.
Among different approaches of PBC, IDA-PBC in [11]
with solution [13] realize the stabilization of the nonlinear
system (4). In this approach, Vy(q) = ﬁ% +

£ {x — z* 4 3l1In(sec(f) + tan(6)) + % tan(@)} 2,
m12:| _

ma2

which has minimum at ¢* = [0 z*]T. M, = [21;
2 cos®(0) — £ cos?(0)
— & cos?(0)  kcos(0) +m3,

k > 0 and m3, > 0. It is positive-definite in the range

¢ € (—%5,%), which is the domain of attraction. The

corresponding controller, IDA-PBC, is

v = A1(0)P(z—2")+p" Az(0)p+A5(0)—kuAs(O)p, (11)

where G = [—cos(0)/l 1], k, > 0, P > 0 are free
parameter. In addition,

} with free parameters

dF
A=~ <m12d9 + m22) ) (12a)
1 B dmyy a1 dmqo _
A2 = —§m12Md ! |:diilzl2 — 1o d§%2 Md 17 (12b)
6gl sin(0)

Az = ———— > 4+ PF(H)A 12

3 m12k0053(9) + PF(0) A, (12¢)
Ay = [_OT@ 1} MY, (12d)

where
61m39,
F(6) = 3lIn(sec(d) + tan(d)) + tan(6),

o = || = —k2 cos®(0) sin(#) %(@
P loae] 1272 -1 |-
B. IDA-PBC for velocity track

Instead of regulating the robot to a specific position, we
expect the wheel-legged robot to move at a constant velocity
given by the remote controller. Therefore, we convert the
IDA-PBC for velocity track.

First of all, the steady state at [0 6 &7 = [0 0 i*]”
is valid when v = 0, because an unforced system with a
constant velocity can be stable.

As shown in the position regulation, x —2* only occurs in
V4, which has the minimum at z*. Equivalently, we can re-
design V; by removing x—x* directly. Then, the minimum of
V4 is still & = 0, and the total energy is not related with z. As
a result, the first term in (11) would disappear. Meanwhile,
it is valid to define p as [é,iew], where T.., = & — z*, to
convert the previous position regulation problem to velocity
regulation problem. Then, the energy function of the robot
is H(q,p) = 3p" M '(q)p + V(p), which means that the
corresponding Lyapunov function H is shifted horizontally
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by 4* in & direction, i.e. Hy(q, p) = 357 M ' (q)p+Va(q).
Moreover, as My is independent with &, dH,/dt is still
negative in the same sense but with & being ... Finally,
the equilibrium moves to [0 6 &]T = [0 0 &*]7.

As discussed above, the IDA-PBC for velocity track is

v=p"A2(0)p+ A3(0) — kyAs(0)p. (13)
V. EXPERIMENTS

A. Experimental Setup

Several experiments are conducted to test the stability and
performance of our linear output regulation and nonlinear
IDA-PBC. All parameters are listed in Table.I.

Parameters
m = 11kg; M = 3kg; g = 9.81m/s>
Robot/IPC 0.37m < 1 < 0.7m: T 2 0l :/0.47m
IDA-PBC k = 0.015; mJ, = 0.04; k, = 0.05; P = 0.2
Output e = [150 12 0.001 10]; kg = —167;
regulation L [2763 39775 648 -—1114 —0.45]T
~ |—-6.48 —105.39 5.84 33.03 0.15

TABLE I: Parameters

In the table, r,, and d, denote the radius of the wheel
and the distance between the two wheels respectively. The
height [ is calculated in real-time using the angles of body
motors and the lengths of leg links. The gain matrix k, in
output regulation is calculated by LQR. It is easy to prove
that (10) is solvable with the parameters above. Particularly,
we set the third element of k., as a small value because it
is more practical in experiment to track a velocity reference
instead of staying at a specific position.

We measure the pitch angle 6 and the roll angle ¢
with their velocities by the IMU. Meanwhile, the angular
velocities of the motor at the right wheel w,(rad/s) and left
wheel w;(rad/s) are measured by the motor encoder. Then,
the linear velocity & and the yaw velocity  of the robot are
calculated by & = “”‘Twrw, A= %T;‘”lrw. The propulsive
force u in the model of IPC (1) and (2) is converted to the
torque applied to each foot motor by 7 = %rwu. Moreover,
the yaw torque 7., = 0.3(¥ —4*) is added to and subtracted
from 7 of the left and right motors respectively to make the
robot rotate, where ¥* is the reference yaw velocity given
by the remote controller. As the yaw torque does not change
the total torque in z direction, it will not break the balance.

In the experiment, CPU PICO-WHU4 is used. The control
period is set as Ts = 2 ms. Hence, we calculate x as x =
Tr_1 + Tstr_1, and discretize the observer as

G = (I+Tsﬁ)6k—1+Ts-§uk—1+TsL (ym,k—1 - 6’@-1) .

B. Experiments

Eight experiments are conducted to test the stability per-
formance of the controllers. Photos are attached in Fig.2.

1) Starting up: The robot starts from its initial posture
(Fig. 2a) to its balance posture (Fig. 2b) under the minimum
height. Both nonlinear controller IDA-PBC in (13) and linear
controller u = k& (k, in Table.l, £ in (5)) are applied, and
the performance are compared.

(g) Manual disturbance

(h) One leg on slope

Fig. 2: Photos of the experiments. These and many more
maneuvers in action are shown in the accompanying video.

2) Standing still: Linear output regulation with observer is
used to make the robot stand still (Fig. 2b) without moving
forward and backward.

3) Changing height: The robot changes its height when
moving in straight lines to avoid the beams at different
heights (Fig. 2¢). IDA-PBC (13) is used to achieve angle
regulation (6, é) and velocity track ().

4) Rotating: The robot rotates in a circle at the maximum
height (Fig.1) with IDA-PBC (13). The result proves that the
rotation in the yaw direction does not influence the balance
control in the longitudinal direction.

5) S-turn: The robot takes S-turns around piles at the
maximum height (Fig.2e) with IDA-PBC (13). It can be
considered as a combination of straight-line moving and
circular rotating, so the control performance of IDA-PBC
is tested with movement in both directions.

6) Bump: The robot runs over speed bumps by IDA-
PBC (13). It tests the robustness of IDA-PBC when external
disturbances are added to the wheels (bottom) of the robot.

7) Manual disturbance: The robot keeps balance by IDA-
PBC (13) when two experimenters kick its body on both
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Fig. 3: Starting up

sides. It tests the robustness of IDA-PBC when external
disturbances are added to the body (top) of the robot.

8) One leg on slope: The robot rushes on a small slope
(1.2m with 7°) with one leg on the slope and falls to the
ground. It tests the robustness of IDA-PBC when one wheel
is off ground slightly.

C. Results

The experimental results are discussed individually, where
the unit of angles is converted to degree for simple reading.

1) Starting up: As shown in Fig.3a, the initial angle
is around 36°, which is outside the linear region. In con-
sequence, the pitch angle is less oscillating and reaches
the equilibrium faster in the case of using the nonlinear
controller. The overshot is 1° by IDA-PBC, while it is 12°
by linear control. Similar phenomena happen to ¢ (Fig.3b).
In Fig.3c, the robot stops slower with nonlinear controller,
but the response of the pitch angle is more addressed here.

Particularly, the control action by the nonlinear controller
changes more aggressively than that by linear controller
(Fig.3d). This realizes the little overshoot by the nonlinear
controller. It would be possible to achieve similar results by
the linear controller if it is tuned as a fuzzy controller [18],
[19]. Nevertheless, a major limitation of the linear controller
is that its parameters (fuzzy membership function) should be
re-tuned when the height of the robot changes.

2) Standing still: In the result, the measured states are
compared with its observed value in Fig.4. Here, we assume

that the initial values of 7, E, 0 and @ are kngwn exactly, but
approximately estimate the initial value of d as 2.7°.

First of all, it must be pointed out that an IPC can hardly
stand still on the smooth ground in practice. However, due to
the friction between the wheels and the carpet, the robot is
possible to stand still (see the zero linear velocity in Fig.4d).

Due to the same reason, the estimated states will differ
from the real values. In detail, the motor input (Fig.4f) is
nonzero, so the estimated acceleration should be nonzero by
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(e) Angle difference d (f) Motor input 7

Fig. 4: Standing still

mathematical model. However, the robot does not move in
reality due to the friction. This mismatch brings the error in
the acceleration, which in turn is integrated to the velocity

(Q and 7 in Fig.4b and Fig.4d respectively) and the position
(f and T in Fig.4a and Fig.4c respectively). However, the
last term in ék would regulate the estimated value to its real
value. As shown in Fig.4b, 4d, 4e, the estimated values are
approaching to the real values (d is about 2.2°). Similarly,
the motor deadzone also leads to the errors in state observer.

3) Changing height: As indicated in Fig.5a, the robot
passes three beams with the height 0.7m, 0.52m and 0.37m,
and runs backward with the height 0.37m, 0.52m and 0.7m.
The moving direction is indicated by the linear velocity in
Fig.5b. In this experiment, as the robot moves slowly, the
influence on the velocity track performance caused by the
sudden variation of the height is not deliberated. In this
experiment, the robot is stable when it is running in the
straight line. Moreover, the parameter [ in the controller (13)
is changed according to the actual height of the robot.

4) Rotating: As discussed in Sec.V-A, the yaw torque
does not influence the balance control, so the robot rotates
clockwise at the velocity of 165°/s smoothly. The torques
applied to wheel motors are also smooth (Fig.6b).

5) S-turn: As shown in Fig.7b, the robot turns anticlock-
wise at the first and third piles and turns clockwise at the
second pile. Nevertheless, to keep the robot on the desired
path, the experimenter tunes the remote controller frequently.
The poor smoothness of the reference signal results in the
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oscillation in ¢ (Fig.7a) and + (Fig.7b) as well. Despite the
imperfect smoothness, the robot keeps stable when following
a desired path at its maximum height.

6) Bumps: In Fig.8, the robot reaches the first bump at
1.5s and the second bump at 2.8s. It is clear from Fig.8a, 8b,
although both the pitch angle and the linear velocity change
sharply at the bumps, the robot keeps stable after leaving
the bumps. The result implies that the IDA-PBC is robust to
such exogenous disturbance on the wheels.

7) Manual disturbance: In Fig.9b, each 0 crossing indi-
cates a kick on the robot, where the robot is stopped and
changes its direction. After each kick, the robot accelerates
suddenly due to the kick, and then decelerates quickly
because IDA-PBC regulates the speed to zero. Before the

g? o M gﬁ N \\\
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S [—pitchangle g-1 h \J H u K\J U
3 -2 [-equilibrium Q

0 10 20 30 =0 10 20 30
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(a) Pitch angle 0
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Fig. 9: Manual disturbance
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Fig. 10: One leg on slope

speed reduces to zero, the robot is kicked on the other side.
Similar phenomenon happens to the pitch angle (Fig.9a),
which changes suddenly due to the kick, and then returns
to its equilibrium (about 1.2°) quickly. The results indicate
the good robustness of IDA-PBC to manual disturbances on
robot body and thighs.

8) One leg on slope: Although the control algorithm is
not designed for slope, the robot can rush on a small slope.
As shown in Fig.10b, the roll angle increases to 19° when
the robot moves on the slope, the projection of the center
of mass may keep between the two wheels, and the robot
keeps stable and moves in a straight line. After the wheel
leaves the top of the slope and falls on the ground, the robot
is still stable especially if its height decreases. As shown in
Fig.10a, the pitch angle converges to its equilibrium (2.2°).
The result verifies the robustness of IDA-PBC when the robot
is running fast and one wheel is off the ground slightly.

VI. CONCLUDING REMARKS

In this paper, in order to balance the novel wheel-legged
robot, there are two challenges: 1) how to maintain the
standing of robots without moving forward or backward
mightily when the equilibrium of the pitch angle is unknown;
2) how to balance the robot when the initial state of the robot
is far away from the equilibrium or the height is changing.
For the first challenge, the linear output regulation technique
along with LQR is adopted to balance the robot. For the
second challenge, based on the nonlinear dynamic model of
the robot, IDA-PBC is applied to balance the robot and track
a constant velocity given by a remote controller. The efficacy
and robustness of the proposed control methodologies have
been validated by experimental results in various tasks.

We are mounting a manipulator to this wheel-legged robot
to accomplish more complex tasks. More details will be
presented in a future paper.
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