// shared_ptr and weak_ptr implementation details -*- C++ -*- // Copyright (C) 2007-2022 Free Software Foundation, Inc. // // This file is part of the GNU ISO C++ Library. This library is free // software; you can redistribute it and/or modify it under the // terms of the GNU General Public License as published by the // Free Software Foundation; either version 3, or (at your option) // any later version. // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // Under Section 7 of GPL version 3, you are granted additional // permissions described in the GCC Runtime Library Exception, version // 3.1, as published by the Free Software Foundation. // You should have received a copy of the GNU General Public License and // a copy of the GCC Runtime Library Exception along with this program; // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see // . // GCC Note: Based on files from version 1.32.0 of the Boost library. // shared_count.hpp // Copyright (c) 2001, 2002, 2003 Peter Dimov and Multi Media Ltd. // shared_ptr.hpp // Copyright (C) 1998, 1999 Greg Colvin and Beman Dawes. // Copyright (C) 2001, 2002, 2003 Peter Dimov // weak_ptr.hpp // Copyright (C) 2001, 2002, 2003 Peter Dimov // enable_shared_from_this.hpp // Copyright (C) 2002 Peter Dimov // Distributed under the Boost Software License, Version 1.0. (See // accompanying file LICENSE_1_0.txt or copy at // http://www.boost.org/LICENSE_1_0.txt) /** @file bits/shared_ptr_base.h * This is an internal header file, included by other library headers. * Do not attempt to use it directly. @headername{memory} */ #ifndef _SHARED_PTR_BASE_H #define _SHARED_PTR_BASE_H 1 #include #include #include #include #include #include #include // std::less #include #include #include #include #if __cplusplus >= 202002L # include // __bit_floor # include # include // std::align # include #endif namespace std _GLIBCXX_VISIBILITY(default) { _GLIBCXX_BEGIN_NAMESPACE_VERSION #if _GLIBCXX_USE_DEPRECATED #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wdeprecated-declarations" template class auto_ptr; #pragma GCC diagnostic pop #endif /** * @brief Exception possibly thrown by @c shared_ptr. * @ingroup exceptions */ class bad_weak_ptr : public std::exception { public: virtual char const* what() const noexcept; virtual ~bad_weak_ptr() noexcept; }; // Substitute for bad_weak_ptr object in the case of -fno-exceptions. inline void __throw_bad_weak_ptr() { _GLIBCXX_THROW_OR_ABORT(bad_weak_ptr()); } using __gnu_cxx::_Lock_policy; using __gnu_cxx::__default_lock_policy; using __gnu_cxx::_S_single; using __gnu_cxx::_S_mutex; using __gnu_cxx::_S_atomic; // Empty helper class except when the template argument is _S_mutex. template<_Lock_policy _Lp> class _Mutex_base { protected: // The atomic policy uses fully-fenced builtins, single doesn't care. enum { _S_need_barriers = 0 }; }; template<> class _Mutex_base<_S_mutex> : public __gnu_cxx::__mutex { protected: // This policy is used when atomic builtins are not available. // The replacement atomic operations might not have the necessary // memory barriers. enum { _S_need_barriers = 1 }; }; template<_Lock_policy _Lp = __default_lock_policy> class _Sp_counted_base : public _Mutex_base<_Lp> { public: _Sp_counted_base() noexcept : _M_use_count(1), _M_weak_count(1) { } virtual ~_Sp_counted_base() noexcept { } // Called when _M_use_count drops to zero, to release the resources // managed by *this. virtual void _M_dispose() noexcept = 0; // Called when _M_weak_count drops to zero. virtual void _M_destroy() noexcept { delete this; } virtual void* _M_get_deleter(const std::type_info&) noexcept = 0; // Increment the use count (used when the count is greater than zero). void _M_add_ref_copy() { __gnu_cxx::__atomic_add_dispatch(&_M_use_count, 1); } // Increment the use count if it is non-zero, throw otherwise. void _M_add_ref_lock() { if (!_M_add_ref_lock_nothrow()) __throw_bad_weak_ptr(); } // Increment the use count if it is non-zero. bool _M_add_ref_lock_nothrow() noexcept; // Decrement the use count. void _M_release() noexcept; // Called by _M_release() when the use count reaches zero. void _M_release_last_use() noexcept { _GLIBCXX_SYNCHRONIZATION_HAPPENS_AFTER(&_M_use_count); _M_dispose(); // There must be a memory barrier between dispose() and destroy() // to ensure that the effects of dispose() are observed in the // thread that runs destroy(). // See http://gcc.gnu.org/ml/libstdc++/2005-11/msg00136.html if (_Mutex_base<_Lp>::_S_need_barriers) { __atomic_thread_fence (__ATOMIC_ACQ_REL); } // Be race-detector-friendly. For more info see bits/c++config. _GLIBCXX_SYNCHRONIZATION_HAPPENS_BEFORE(&_M_weak_count); if (__gnu_cxx::__exchange_and_add_dispatch(&_M_weak_count, -1) == 1) { _GLIBCXX_SYNCHRONIZATION_HAPPENS_AFTER(&_M_weak_count); _M_destroy(); } } // As above, but 'noinline' to reduce code size on the cold path. __attribute__((__noinline__)) void _M_release_last_use_cold() noexcept { _M_release_last_use(); } // Increment the weak count. void _M_weak_add_ref() noexcept { __gnu_cxx::__atomic_add_dispatch(&_M_weak_count, 1); } // Decrement the weak count. void _M_weak_release() noexcept { // Be race-detector-friendly. For more info see bits/c++config. _GLIBCXX_SYNCHRONIZATION_HAPPENS_BEFORE(&_M_weak_count); if (__gnu_cxx::__exchange_and_add_dispatch(&_M_weak_count, -1) == 1) { _GLIBCXX_SYNCHRONIZATION_HAPPENS_AFTER(&_M_weak_count); if (_Mutex_base<_Lp>::_S_need_barriers) { // See _M_release(), // destroy() must observe results of dispose() __atomic_thread_fence (__ATOMIC_ACQ_REL); } _M_destroy(); } } long _M_get_use_count() const noexcept { // No memory barrier is used here so there is no synchronization // with other threads. return __atomic_load_n(&_M_use_count, __ATOMIC_RELAXED); } private: _Sp_counted_base(_Sp_counted_base const&) = delete; _Sp_counted_base& operator=(_Sp_counted_base const&) = delete; _Atomic_word _M_use_count; // #shared _Atomic_word _M_weak_count; // #weak + (#shared != 0) }; template<> inline bool _Sp_counted_base<_S_single>:: _M_add_ref_lock_nothrow() noexcept { if (_M_use_count == 0) return false; ++_M_use_count; return true; } template<> inline bool _Sp_counted_base<_S_mutex>:: _M_add_ref_lock_nothrow() noexcept { __gnu_cxx::__scoped_lock sentry(*this); if (__gnu_cxx::__exchange_and_add_dispatch(&_M_use_count, 1) == 0) { _M_use_count = 0; return false; } return true; } template<> inline bool _Sp_counted_base<_S_atomic>:: _M_add_ref_lock_nothrow() noexcept { // Perform lock-free add-if-not-zero operation. _Atomic_word __count = _M_get_use_count(); do { if (__count == 0) return false; // Replace the current counter value with the old value + 1, as // long as it's not changed meanwhile. } while (!__atomic_compare_exchange_n(&_M_use_count, &__count, __count + 1, true, __ATOMIC_ACQ_REL, __ATOMIC_RELAXED)); return true; } template<> inline void _Sp_counted_base<_S_single>::_M_add_ref_copy() { ++_M_use_count; } template<> inline void _Sp_counted_base<_S_single>::_M_release() noexcept { if (--_M_use_count == 0) { _M_dispose(); if (--_M_weak_count == 0) _M_destroy(); } } template<> inline void _Sp_counted_base<_S_mutex>::_M_release() noexcept { // Be race-detector-friendly. For more info see bits/c++config. _GLIBCXX_SYNCHRONIZATION_HAPPENS_BEFORE(&_M_use_count); if (__gnu_cxx::__exchange_and_add_dispatch(&_M_use_count, -1) == 1) { _M_release_last_use(); } } template<> inline void _Sp_counted_base<_S_atomic>::_M_release() noexcept { _GLIBCXX_SYNCHRONIZATION_HAPPENS_BEFORE(&_M_use_count); #if ! _GLIBCXX_TSAN constexpr bool __lock_free = __atomic_always_lock_free(sizeof(long long), 0) && __atomic_always_lock_free(sizeof(_Atomic_word), 0); constexpr bool __double_word = sizeof(long long) == 2 * sizeof(_Atomic_word); // The ref-count members follow the vptr, so are aligned to // alignof(void*). constexpr bool __aligned = __alignof(long long) <= alignof(void*); if _GLIBCXX17_CONSTEXPR (__lock_free && __double_word && __aligned) { constexpr int __wordbits = __CHAR_BIT__ * sizeof(_Atomic_word); constexpr int __shiftbits = __double_word ? __wordbits : 0; constexpr long long __unique_ref = 1LL + (1LL << __shiftbits); auto __both_counts = reinterpret_cast(&_M_use_count); _GLIBCXX_SYNCHRONIZATION_HAPPENS_BEFORE(&_M_weak_count); if (__atomic_load_n(__both_counts, __ATOMIC_ACQUIRE) == __unique_ref) { // Both counts are 1, so there are no weak references and // we are releasing the last strong reference. No other // threads can observe the effects of this _M_release() // call (e.g. calling use_count()) without a data race. _M_weak_count = _M_use_count = 0; _GLIBCXX_SYNCHRONIZATION_HAPPENS_AFTER(&_M_use_count); _GLIBCXX_SYNCHRONIZATION_HAPPENS_AFTER(&_M_weak_count); _M_dispose(); _M_destroy(); return; } if (__gnu_cxx::__exchange_and_add_dispatch(&_M_use_count, -1) == 1) [[__unlikely__]] { _M_release_last_use_cold(); return; } } else #endif if (__gnu_cxx::__exchange_and_add_dispatch(&_M_use_count, -1) == 1) { _M_release_last_use(); } } template<> inline void _Sp_counted_base<_S_single>::_M_weak_add_ref() noexcept { ++_M_weak_count; } template<> inline void _Sp_counted_base<_S_single>::_M_weak_release() noexcept { if (--_M_weak_count == 0) _M_destroy(); } template<> inline long _Sp_counted_base<_S_single>::_M_get_use_count() const noexcept { return _M_use_count; } // Forward declarations. template class __shared_ptr; template class __weak_ptr; template class __enable_shared_from_this; template class shared_ptr; template class weak_ptr; template struct owner_less; template class enable_shared_from_this; template<_Lock_policy _Lp = __default_lock_policy> class __weak_count; template<_Lock_policy _Lp = __default_lock_policy> class __shared_count; #if __cplusplus >= 202002L template class _Sp_atomic; #endif // Counted ptr with no deleter or allocator support template class _Sp_counted_ptr final : public _Sp_counted_base<_Lp> { public: explicit _Sp_counted_ptr(_Ptr __p) noexcept : _M_ptr(__p) { } virtual void _M_dispose() noexcept { delete _M_ptr; } virtual void _M_destroy() noexcept { delete this; } virtual void* _M_get_deleter(const std::type_info&) noexcept { return nullptr; } _Sp_counted_ptr(const _Sp_counted_ptr&) = delete; _Sp_counted_ptr& operator=(const _Sp_counted_ptr&) = delete; private: _Ptr _M_ptr; }; template<> inline void _Sp_counted_ptr::_M_dispose() noexcept { } template<> inline void _Sp_counted_ptr::_M_dispose() noexcept { } template<> inline void _Sp_counted_ptr::_M_dispose() noexcept { } // FIXME: once __has_cpp_attribute(__no_unique_address__)) is true for // all supported compilers we can greatly simplify _Sp_ebo_helper. // N.B. unconditionally applying the attribute could change layout for // final types, which currently cannot use EBO so have a unique address. template struct _Sp_ebo_helper; /// Specialization using EBO. template struct _Sp_ebo_helper<_Nm, _Tp, true> : private _Tp { explicit _Sp_ebo_helper(const _Tp& __tp) : _Tp(__tp) { } explicit _Sp_ebo_helper(_Tp&& __tp) : _Tp(std::move(__tp)) { } static _Tp& _S_get(_Sp_ebo_helper& __eboh) { return static_cast<_Tp&>(__eboh); } }; /// Specialization not using EBO. template struct _Sp_ebo_helper<_Nm, _Tp, false> { explicit _Sp_ebo_helper(const _Tp& __tp) : _M_tp(__tp) { } explicit _Sp_ebo_helper(_Tp&& __tp) : _M_tp(std::move(__tp)) { } static _Tp& _S_get(_Sp_ebo_helper& __eboh) { return __eboh._M_tp; } private: _Tp _M_tp; }; // Support for custom deleter and/or allocator template class _Sp_counted_deleter final : public _Sp_counted_base<_Lp> { class _Impl : _Sp_ebo_helper<0, _Deleter>, _Sp_ebo_helper<1, _Alloc> { typedef _Sp_ebo_helper<0, _Deleter> _Del_base; typedef _Sp_ebo_helper<1, _Alloc> _Alloc_base; public: _Impl(_Ptr __p, _Deleter __d, const _Alloc& __a) noexcept : _Del_base(std::move(__d)), _Alloc_base(__a), _M_ptr(__p) { } _Deleter& _M_del() noexcept { return _Del_base::_S_get(*this); } _Alloc& _M_alloc() noexcept { return _Alloc_base::_S_get(*this); } _Ptr _M_ptr; }; public: using __allocator_type = __alloc_rebind<_Alloc, _Sp_counted_deleter>; // __d(__p) must not throw. _Sp_counted_deleter(_Ptr __p, _Deleter __d) noexcept : _M_impl(__p, std::move(__d), _Alloc()) { } // __d(__p) must not throw. _Sp_counted_deleter(_Ptr __p, _Deleter __d, const _Alloc& __a) noexcept : _M_impl(__p, std::move(__d), __a) { } ~_Sp_counted_deleter() noexcept { } virtual void _M_dispose() noexcept { _M_impl._M_del()(_M_impl._M_ptr); } virtual void _M_destroy() noexcept { __allocator_type __a(_M_impl._M_alloc()); __allocated_ptr<__allocator_type> __guard_ptr{ __a, this }; this->~_Sp_counted_deleter(); } virtual void* _M_get_deleter(const type_info& __ti [[__gnu__::__unused__]]) noexcept { #if __cpp_rtti // _GLIBCXX_RESOLVE_LIB_DEFECTS // 2400. shared_ptr's get_deleter() should use addressof() return __ti == typeid(_Deleter) ? std::__addressof(_M_impl._M_del()) : nullptr; #else return nullptr; #endif } private: _Impl _M_impl; }; // helpers for make_shared / allocate_shared struct _Sp_make_shared_tag { private: template friend class _Sp_counted_ptr_inplace; static const type_info& _S_ti() noexcept _GLIBCXX_VISIBILITY(default) { alignas(type_info) static constexpr char __tag[sizeof(type_info)] = { }; return reinterpret_cast(__tag); } static bool _S_eq(const type_info&) noexcept; }; template struct _Sp_alloc_shared_tag { const _Alloc& _M_a; }; template class _Sp_counted_ptr_inplace final : public _Sp_counted_base<_Lp> { class _Impl : _Sp_ebo_helper<0, _Alloc> { typedef _Sp_ebo_helper<0, _Alloc> _A_base; public: explicit _Impl(_Alloc __a) noexcept : _A_base(__a) { } _Alloc& _M_alloc() noexcept { return _A_base::_S_get(*this); } __gnu_cxx::__aligned_buffer<_Tp> _M_storage; }; public: using __allocator_type = __alloc_rebind<_Alloc, _Sp_counted_ptr_inplace>; // Alloc parameter is not a reference so doesn't alias anything in __args template _Sp_counted_ptr_inplace(_Alloc __a, _Args&&... __args) : _M_impl(__a) { // _GLIBCXX_RESOLVE_LIB_DEFECTS // 2070. allocate_shared should use allocator_traits::construct allocator_traits<_Alloc>::construct(__a, _M_ptr(), std::forward<_Args>(__args)...); // might throw } ~_Sp_counted_ptr_inplace() noexcept { } virtual void _M_dispose() noexcept { allocator_traits<_Alloc>::destroy(_M_impl._M_alloc(), _M_ptr()); } // Override because the allocator needs to know the dynamic type virtual void _M_destroy() noexcept { __allocator_type __a(_M_impl._M_alloc()); __allocated_ptr<__allocator_type> __guard_ptr{ __a, this }; this->~_Sp_counted_ptr_inplace(); } private: friend class __shared_count<_Lp>; // To be able to call _M_ptr(). // No longer used, but code compiled against old libstdc++ headers // might still call it from __shared_ptr ctor to get the pointer out. virtual void* _M_get_deleter(const std::type_info& __ti) noexcept override { auto __ptr = const_cast::type*>(_M_ptr()); // Check for the fake type_info first, so we don't try to access it // as a real type_info object. Otherwise, check if it's the real // type_info for this class. With RTTI enabled we can check directly, // or call a library function to do it. if (&__ti == &_Sp_make_shared_tag::_S_ti() || #if __cpp_rtti __ti == typeid(_Sp_make_shared_tag) #else _Sp_make_shared_tag::_S_eq(__ti) #endif ) return __ptr; return nullptr; } _Tp* _M_ptr() noexcept { return _M_impl._M_storage._M_ptr(); } _Impl _M_impl; }; #if __cplusplus >= 202002L # define __cpp_lib_smart_ptr_for_overwrite 202002L struct _Sp_overwrite_tag { }; // Partial specialization used for make_shared_for_overwrite(). // This partial specialization is used when the allocator's value type // is the special _Sp_overwrite_tag type. #if __cpp_concepts template requires is_same_v class _Sp_counted_ptr_inplace<_Tp, _Alloc, _Lp> final #else template class _Alloc, _Lock_policy _Lp> class _Sp_counted_ptr_inplace<_Tp, _Alloc<_Sp_overwrite_tag>, _Lp> final #endif : public _Sp_counted_base<_Lp> { [[no_unique_address]] _Alloc _M_alloc; union { _Tp _M_obj; char _M_unused; }; friend class __shared_count<_Lp>; // To be able to call _M_ptr(). _Tp* _M_ptr() noexcept { return std::__addressof(_M_obj); } public: using __allocator_type = __alloc_rebind<_Alloc, _Sp_counted_ptr_inplace>; _Sp_counted_ptr_inplace(const _Alloc& __a) : _M_alloc(__a) { ::new((void*)_M_ptr()) _Tp; // default-initialized, for overwrite. } ~_Sp_counted_ptr_inplace() noexcept { } virtual void _M_dispose() noexcept { _M_obj.~_Tp(); } // Override because the allocator needs to know the dynamic type virtual void _M_destroy() noexcept { using pointer = typename allocator_traits<__allocator_type>::pointer; __allocator_type __a(_M_alloc); auto __p = pointer_traits::pointer_to(*this); __allocated_ptr<__allocator_type> __guard_ptr{ __a, __p }; this->~_Sp_counted_ptr_inplace(); } void* _M_get_deleter(const std::type_info&) noexcept override { return nullptr; } }; #endif // C++20 #if __cplusplus <= 201703L # define __cpp_lib_shared_ptr_arrays 201611L #else # define __cpp_lib_shared_ptr_arrays 201707L struct _Sp_overwrite_tag; // For make_shared, make_shared, allocate_shared etc. template struct _Sp_counted_array_base { [[no_unique_address]] _Alloc _M_alloc{}; size_t _M_n = 0; bool _M_overwrite = false; typename allocator_traits<_Alloc>::pointer _M_alloc_array(size_t __tail) { return allocator_traits<_Alloc>::allocate(_M_alloc, _M_n + __tail); } void _M_dealloc_array(typename allocator_traits<_Alloc>::pointer __p, size_t __tail) { allocator_traits<_Alloc>::deallocate(_M_alloc, __p, _M_n + __tail); } // Init the array elements template void _M_init(typename allocator_traits<_Alloc>::value_type* __p, _Init __init) { using _Tp = remove_pointer_t<_Init>; using _Up = typename allocator_traits<_Alloc>::value_type; if constexpr (is_same_v<_Init, _Sp_overwrite_tag>) { std::uninitialized_default_construct_n(__p, _M_n); _M_overwrite = true; } else if (__init == nullptr) std::__uninitialized_default_n_a(__p, _M_n, _M_alloc); else if constexpr (!is_array_v<_Tp>) std::__uninitialized_fill_n_a(__p, _M_n, *__init, _M_alloc); else { #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wunused-local-typedefs" struct _Iter { using value_type = _Up; using difference_type = ptrdiff_t; using pointer = const _Up*; using reference = const _Up&; using iterator_category = forward_iterator_tag; const _Up* _M_p; size_t _M_len; size_t _M_pos; _Iter& operator++() { ++_M_pos; return *this; } _Iter operator++(int) { auto __i(*this); ++_M_pos; return __i; } reference operator*() const { return _M_p[_M_pos % _M_len]; } pointer operator->() const { return _M_p + (_M_pos % _M_len); } bool operator==(const _Iter& __i) const { return _M_pos == __i._M_pos; } }; #pragma GCC diagnostic pop _Iter __first{_S_first_elem(__init), sizeof(_Tp) / sizeof(_Up)}; _Iter __last = __first; __last._M_pos = _M_n; std::__uninitialized_copy_a(__first, __last, __p, _M_alloc); } } protected: // Destroy the array elements void _M_dispose_array(typename allocator_traits<_Alloc>::value_type* __p) { if (_M_overwrite) std::destroy_n(__p, _M_n); else { size_t __n = _M_n; while (__n--) allocator_traits<_Alloc>::destroy(_M_alloc, __p + __n); } } private: template static _Tp* _S_first_elem(_Tp* __p) { return __p; } template static auto _S_first_elem(_Tp (*__p)[_Nm]) { return _S_first_elem(*__p); } }; // Control block for make_shared, make_shared etc. that will be // placed into unused memory at the end of the array. template class _Sp_counted_array final : public _Sp_counted_base<_Lp>, _Sp_counted_array_base<_Alloc> { using pointer = typename allocator_traits<_Alloc>::pointer; pointer _M_alloc_ptr; auto _M_ptr() const noexcept { return std::to_address(_M_alloc_ptr); } friend class __shared_count<_Lp>; // To be able to call _M_ptr(). public: _Sp_counted_array(const _Sp_counted_array_base<_Alloc>& __a, pointer __p) noexcept : _Sp_counted_array_base<_Alloc>(__a), _M_alloc_ptr(__p) { } ~_Sp_counted_array() = default; virtual void _M_dispose() noexcept { if (this->_M_n) this->_M_dispose_array(_M_ptr()); } // Override because the allocator needs to know the dynamic type virtual void _M_destroy() noexcept { _Sp_counted_array_base<_Alloc> __a = *this; pointer __p = _M_alloc_ptr; this->~_Sp_counted_array(); __a._M_dealloc_array(__p, _S_tail()); } // Returns the number of additional array elements that must be // allocated in order to store a _Sp_counted_array at the end. static constexpr size_t _S_tail() { // The array elemenent type. using _Tp = typename allocator_traits<_Alloc>::value_type; // The space needed to store a _Sp_counted_array object. size_t __bytes = sizeof(_Sp_counted_array); // Add any padding needed for manual alignment within the buffer. if constexpr (alignof(_Tp) < alignof(_Sp_counted_array)) __bytes += alignof(_Sp_counted_array) - alignof(_Tp); return (__bytes + sizeof(_Tp) - 1) / sizeof(_Tp); } void* _M_get_deleter(const std::type_info&) noexcept override { return nullptr; } }; #endif // C++20 // The default deleter for shared_ptr and shared_ptr. struct __sp_array_delete { template void operator()(_Yp* __p) const { delete[] __p; } }; template<_Lock_policy _Lp> class __shared_count { // Prevent _Sp_alloc_shared_tag from matching the shared_ptr(P, D) ctor. template struct __not_alloc_shared_tag { using type = void; }; template struct __not_alloc_shared_tag<_Sp_alloc_shared_tag<_Tp>> { }; #if __cpp_lib_shared_ptr_arrays >= 201707L template struct __not_alloc_shared_tag<_Sp_counted_array_base<_Alloc>> { }; #endif public: constexpr __shared_count() noexcept : _M_pi(0) { } template explicit __shared_count(_Ptr __p) : _M_pi(0) { __try { _M_pi = new _Sp_counted_ptr<_Ptr, _Lp>(__p); } __catch(...) { delete __p; __throw_exception_again; } } template __shared_count(_Ptr __p, /* is_array = */ false_type) : __shared_count(__p) { } template __shared_count(_Ptr __p, /* is_array = */ true_type) : __shared_count(__p, __sp_array_delete{}, allocator()) { } template::type> __shared_count(_Ptr __p, _Deleter __d) : __shared_count(__p, std::move(__d), allocator()) { } template::type> __shared_count(_Ptr __p, _Deleter __d, _Alloc __a) : _M_pi(0) { typedef _Sp_counted_deleter<_Ptr, _Deleter, _Alloc, _Lp> _Sp_cd_type; __try { typename _Sp_cd_type::__allocator_type __a2(__a); auto __guard = std::__allocate_guarded(__a2); _Sp_cd_type* __mem = __guard.get(); ::new (__mem) _Sp_cd_type(__p, std::move(__d), std::move(__a)); _M_pi = __mem; __guard = nullptr; } __catch(...) { __d(__p); // Call _Deleter on __p. __throw_exception_again; } } template __shared_count(_Tp*& __p, _Sp_alloc_shared_tag<_Alloc> __a, _Args&&... __args) { typedef _Sp_counted_ptr_inplace<_Tp, _Alloc, _Lp> _Sp_cp_type; typename _Sp_cp_type::__allocator_type __a2(__a._M_a); auto __guard = std::__allocate_guarded(__a2); _Sp_cp_type* __mem = __guard.get(); auto __pi = ::new (__mem) _Sp_cp_type(__a._M_a, std::forward<_Args>(__args)...); __guard = nullptr; _M_pi = __pi; __p = __pi->_M_ptr(); } #if __cpp_lib_shared_ptr_arrays >= 201707L template __shared_count(_Tp*& __p, const _Sp_counted_array_base<_Alloc>& __a, _Init __init) { using _Up = remove_all_extents_t<_Tp>; static_assert(is_same_v<_Up, typename _Alloc::value_type>); using _Sp_ca_type = _Sp_counted_array<_Alloc, _Lp>; const size_t __tail = _Sp_ca_type::_S_tail(); struct _Guarded_ptr : _Sp_counted_array_base<_Alloc> { typename allocator_traits<_Alloc>::pointer _M_ptr; _Guarded_ptr(_Sp_counted_array_base<_Alloc> __a) : _Sp_counted_array_base<_Alloc>(__a), _M_ptr(this->_M_alloc_array(_Sp_ca_type::_S_tail())) { } ~_Guarded_ptr() { if (_M_ptr) this->_M_dealloc_array(_M_ptr, _Sp_ca_type::_S_tail()); } }; _Guarded_ptr __guard{__a}; _Up* const __raw = std::to_address(__guard._M_ptr); __guard._M_init(__raw, __init); // might throw void* __c = __raw + __a._M_n; if constexpr (alignof(_Up) < alignof(_Sp_ca_type)) { size_t __space = sizeof(_Up) * __tail; __c = std::align(alignof(_Sp_ca_type), sizeof(_Sp_ca_type), __c, __space); } auto __pi = ::new(__c) _Sp_ca_type(__guard, __guard._M_ptr); __guard._M_ptr = nullptr; _M_pi = __pi; __p = reinterpret_cast<_Tp*>(__raw); } #endif #if _GLIBCXX_USE_DEPRECATED #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wdeprecated-declarations" // Special case for auto_ptr<_Tp> to provide the strong guarantee. template explicit __shared_count(std::auto_ptr<_Tp>&& __r); #pragma GCC diagnostic pop #endif // Special case for unique_ptr<_Tp,_Del> to provide the strong guarantee. template explicit __shared_count(std::unique_ptr<_Tp, _Del>&& __r) : _M_pi(0) { // _GLIBCXX_RESOLVE_LIB_DEFECTS // 2415. Inconsistency between unique_ptr and shared_ptr if (__r.get() == nullptr) return; using _Ptr = typename unique_ptr<_Tp, _Del>::pointer; using _Del2 = __conditional_t::value, reference_wrapper::type>, _Del>; using _Sp_cd_type = _Sp_counted_deleter<_Ptr, _Del2, allocator, _Lp>; using _Alloc = allocator<_Sp_cd_type>; using _Alloc_traits = allocator_traits<_Alloc>; _Alloc __a; _Sp_cd_type* __mem = _Alloc_traits::allocate(__a, 1); // _GLIBCXX_RESOLVE_LIB_DEFECTS // 3548. shared_ptr construction from unique_ptr should move // (not copy) the deleter _Alloc_traits::construct(__a, __mem, __r.release(), std::forward<_Del>(__r.get_deleter())); _M_pi = __mem; } // Throw bad_weak_ptr when __r._M_get_use_count() == 0. explicit __shared_count(const __weak_count<_Lp>& __r); // Does not throw if __r._M_get_use_count() == 0, caller must check. explicit __shared_count(const __weak_count<_Lp>& __r, std::nothrow_t) noexcept; ~__shared_count() noexcept { if (_M_pi != nullptr) _M_pi->_M_release(); } __shared_count(const __shared_count& __r) noexcept : _M_pi(__r._M_pi) { if (_M_pi != nullptr) _M_pi->_M_add_ref_copy(); } __shared_count& operator=(const __shared_count& __r) noexcept { _Sp_counted_base<_Lp>* __tmp = __r._M_pi; if (__tmp != _M_pi) { if (__tmp != nullptr) __tmp->_M_add_ref_copy(); if (_M_pi != nullptr) _M_pi->_M_release(); _M_pi = __tmp; } return *this; } void _M_swap(__shared_count& __r) noexcept { _Sp_counted_base<_Lp>* __tmp = __r._M_pi; __r._M_pi = _M_pi; _M_pi = __tmp; } long _M_get_use_count() const noexcept { return _M_pi ? _M_pi->_M_get_use_count() : 0; } bool _M_unique() const noexcept { return this->_M_get_use_count() == 1; } void* _M_get_deleter(const std::type_info& __ti) const noexcept { return _M_pi ? _M_pi->_M_get_deleter(__ti) : nullptr; } bool _M_less(const __shared_count& __rhs) const noexcept { return std::less<_Sp_counted_base<_Lp>*>()(this->_M_pi, __rhs._M_pi); } bool _M_less(const __weak_count<_Lp>& __rhs) const noexcept { return std::less<_Sp_counted_base<_Lp>*>()(this->_M_pi, __rhs._M_pi); } // Friend function injected into enclosing namespace and found by ADL friend inline bool operator==(const __shared_count& __a, const __shared_count& __b) noexcept { return __a._M_pi == __b._M_pi; } private: friend class __weak_count<_Lp>; #if __cplusplus >= 202002L template friend class _Sp_atomic; #endif _Sp_counted_base<_Lp>* _M_pi; }; template<_Lock_policy _Lp> class __weak_count { public: constexpr __weak_count() noexcept : _M_pi(nullptr) { } __weak_count(const __shared_count<_Lp>& __r) noexcept : _M_pi(__r._M_pi) { if (_M_pi != nullptr) _M_pi->_M_weak_add_ref(); } __weak_count(const __weak_count& __r) noexcept : _M_pi(__r._M_pi) { if (_M_pi != nullptr) _M_pi->_M_weak_add_ref(); } __weak_count(__weak_count&& __r) noexcept : _M_pi(__r._M_pi) { __r._M_pi = nullptr; } ~__weak_count() noexcept { if (_M_pi != nullptr) _M_pi->_M_weak_release(); } __weak_count& operator=(const __shared_count<_Lp>& __r) noexcept { _Sp_counted_base<_Lp>* __tmp = __r._M_pi; if (__tmp != nullptr) __tmp->_M_weak_add_ref(); if (_M_pi != nullptr) _M_pi->_M_weak_release(); _M_pi = __tmp; return *this; } __weak_count& operator=(const __weak_count& __r) noexcept { _Sp_counted_base<_Lp>* __tmp = __r._M_pi; if (__tmp != nullptr) __tmp->_M_weak_add_ref(); if (_M_pi != nullptr) _M_pi->_M_weak_release(); _M_pi = __tmp; return *this; } __weak_count& operator=(__weak_count&& __r) noexcept { if (_M_pi != nullptr) _M_pi->_M_weak_release(); _M_pi = __r._M_pi; __r._M_pi = nullptr; return *this; } void _M_swap(__weak_count& __r) noexcept { _Sp_counted_base<_Lp>* __tmp = __r._M_pi; __r._M_pi = _M_pi; _M_pi = __tmp; } long _M_get_use_count() const noexcept { return _M_pi != nullptr ? _M_pi->_M_get_use_count() : 0; } bool _M_less(const __weak_count& __rhs) const noexcept { return std::less<_Sp_counted_base<_Lp>*>()(this->_M_pi, __rhs._M_pi); } bool _M_less(const __shared_count<_Lp>& __rhs) const noexcept { return std::less<_Sp_counted_base<_Lp>*>()(this->_M_pi, __rhs._M_pi); } // Friend function injected into enclosing namespace and found by ADL friend inline bool operator==(const __weak_count& __a, const __weak_count& __b) noexcept { return __a._M_pi == __b._M_pi; } private: friend class __shared_count<_Lp>; #if __cplusplus >= 202002L template friend class _Sp_atomic; #endif _Sp_counted_base<_Lp>* _M_pi; }; // Now that __weak_count is defined we can define this constructor: template<_Lock_policy _Lp> inline __shared_count<_Lp>::__shared_count(const __weak_count<_Lp>& __r) : _M_pi(__r._M_pi) { if (_M_pi == nullptr || !_M_pi->_M_add_ref_lock_nothrow()) __throw_bad_weak_ptr(); } // Now that __weak_count is defined we can define this constructor: template<_Lock_policy _Lp> inline __shared_count<_Lp>:: __shared_count(const __weak_count<_Lp>& __r, std::nothrow_t) noexcept : _M_pi(__r._M_pi) { if (_M_pi && !_M_pi->_M_add_ref_lock_nothrow()) _M_pi = nullptr; } // Helper traits for shared_ptr of array: // A pointer type Y* is said to be compatible with a pointer type T* when // either Y* is convertible to T* or Y is U[N] and T is U cv []. template struct __sp_compatible_with : false_type { }; template struct __sp_compatible_with<_Yp*, _Tp*> : is_convertible<_Yp*, _Tp*>::type { }; template struct __sp_compatible_with<_Up(*)[_Nm], _Up(*)[]> : true_type { }; template struct __sp_compatible_with<_Up(*)[_Nm], const _Up(*)[]> : true_type { }; template struct __sp_compatible_with<_Up(*)[_Nm], volatile _Up(*)[]> : true_type { }; template struct __sp_compatible_with<_Up(*)[_Nm], const volatile _Up(*)[]> : true_type { }; // Test conversion from Y(*)[N] to U(*)[N] without forming invalid type Y[N]. template struct __sp_is_constructible_arrN : false_type { }; template struct __sp_is_constructible_arrN<_Up, _Nm, _Yp, __void_t<_Yp[_Nm]>> : is_convertible<_Yp(*)[_Nm], _Up(*)[_Nm]>::type { }; // Test conversion from Y(*)[] to U(*)[] without forming invalid type Y[]. template struct __sp_is_constructible_arr : false_type { }; template struct __sp_is_constructible_arr<_Up, _Yp, __void_t<_Yp[]>> : is_convertible<_Yp(*)[], _Up(*)[]>::type { }; // Trait to check if shared_ptr can be constructed from Y*. template struct __sp_is_constructible; // When T is U[N], Y(*)[N] shall be convertible to T*; template struct __sp_is_constructible<_Up[_Nm], _Yp> : __sp_is_constructible_arrN<_Up, _Nm, _Yp>::type { }; // when T is U[], Y(*)[] shall be convertible to T*; template struct __sp_is_constructible<_Up[], _Yp> : __sp_is_constructible_arr<_Up, _Yp>::type { }; // otherwise, Y* shall be convertible to T*. template struct __sp_is_constructible : is_convertible<_Yp*, _Tp*>::type { }; // Define operator* and operator-> for shared_ptr. template::value, bool = is_void<_Tp>::value> class __shared_ptr_access { public: using element_type = _Tp; element_type& operator*() const noexcept { __glibcxx_assert(_M_get() != nullptr); return *_M_get(); } element_type* operator->() const noexcept { _GLIBCXX_DEBUG_PEDASSERT(_M_get() != nullptr); return _M_get(); } private: element_type* _M_get() const noexcept { return static_cast*>(this)->get(); } }; // Define operator-> for shared_ptr. template class __shared_ptr_access<_Tp, _Lp, false, true> { public: using element_type = _Tp; element_type* operator->() const noexcept { auto __ptr = static_cast*>(this)->get(); _GLIBCXX_DEBUG_PEDASSERT(__ptr != nullptr); return __ptr; } }; // Define operator[] for shared_ptr and shared_ptr. template class __shared_ptr_access<_Tp, _Lp, true, false> { public: using element_type = typename remove_extent<_Tp>::type; #if __cplusplus <= 201402L [[__deprecated__("shared_ptr::operator* is absent from C++17")]] element_type& operator*() const noexcept { __glibcxx_assert(_M_get() != nullptr); return *_M_get(); } [[__deprecated__("shared_ptr::operator-> is absent from C++17")]] element_type* operator->() const noexcept { _GLIBCXX_DEBUG_PEDASSERT(_M_get() != nullptr); return _M_get(); } #endif element_type& operator[](ptrdiff_t __i) const noexcept { __glibcxx_assert(_M_get() != nullptr); __glibcxx_assert(!extent<_Tp>::value || __i < extent<_Tp>::value); return _M_get()[__i]; } private: element_type* _M_get() const noexcept { return static_cast*>(this)->get(); } }; template class __shared_ptr : public __shared_ptr_access<_Tp, _Lp> { public: using element_type = typename remove_extent<_Tp>::type; private: // Constraint for taking ownership of a pointer of type _Yp*: template using _SafeConv = typename enable_if<__sp_is_constructible<_Tp, _Yp>::value>::type; // Constraint for construction from shared_ptr and weak_ptr: template using _Compatible = typename enable_if<__sp_compatible_with<_Yp*, _Tp*>::value, _Res>::type; // Constraint for assignment from shared_ptr and weak_ptr: template using _Assignable = _Compatible<_Yp, __shared_ptr&>; // Constraint for construction from unique_ptr: template::pointer> using _UniqCompatible = __enable_if_t<__and_< __sp_compatible_with<_Yp*, _Tp*>, is_convertible<_Ptr, element_type*>, is_move_constructible<_Del> >::value, _Res>; // Constraint for assignment from unique_ptr: template using _UniqAssignable = _UniqCompatible<_Yp, _Del, __shared_ptr&>; public: #if __cplusplus > 201402L using weak_type = __weak_ptr<_Tp, _Lp>; #endif constexpr __shared_ptr() noexcept : _M_ptr(0), _M_refcount() { } template> explicit __shared_ptr(_Yp* __p) : _M_ptr(__p), _M_refcount(__p, typename is_array<_Tp>::type()) { static_assert( !is_void<_Yp>::value, "incomplete type" ); static_assert( sizeof(_Yp) > 0, "incomplete type" ); _M_enable_shared_from_this_with(__p); } template> __shared_ptr(_Yp* __p, _Deleter __d) : _M_ptr(__p), _M_refcount(__p, std::move(__d)) { static_assert(__is_invocable<_Deleter&, _Yp*&>::value, "deleter expression d(p) is well-formed"); _M_enable_shared_from_this_with(__p); } template> __shared_ptr(_Yp* __p, _Deleter __d, _Alloc __a) : _M_ptr(__p), _M_refcount(__p, std::move(__d), std::move(__a)) { static_assert(__is_invocable<_Deleter&, _Yp*&>::value, "deleter expression d(p) is well-formed"); _M_enable_shared_from_this_with(__p); } template __shared_ptr(nullptr_t __p, _Deleter __d) : _M_ptr(0), _M_refcount(__p, std::move(__d)) { } template __shared_ptr(nullptr_t __p, _Deleter __d, _Alloc __a) : _M_ptr(0), _M_refcount(__p, std::move(__d), std::move(__a)) { } // Aliasing constructor template __shared_ptr(const __shared_ptr<_Yp, _Lp>& __r, element_type* __p) noexcept : _M_ptr(__p), _M_refcount(__r._M_refcount) // never throws { } // Aliasing constructor template __shared_ptr(__shared_ptr<_Yp, _Lp>&& __r, element_type* __p) noexcept : _M_ptr(__p), _M_refcount() { _M_refcount._M_swap(__r._M_refcount); __r._M_ptr = nullptr; } __shared_ptr(const __shared_ptr&) noexcept = default; __shared_ptr& operator=(const __shared_ptr&) noexcept = default; ~__shared_ptr() = default; template> __shared_ptr(const __shared_ptr<_Yp, _Lp>& __r) noexcept : _M_ptr(__r._M_ptr), _M_refcount(__r._M_refcount) { } __shared_ptr(__shared_ptr&& __r) noexcept : _M_ptr(__r._M_ptr), _M_refcount() { _M_refcount._M_swap(__r._M_refcount); __r._M_ptr = nullptr; } template> __shared_ptr(__shared_ptr<_Yp, _Lp>&& __r) noexcept : _M_ptr(__r._M_ptr), _M_refcount() { _M_refcount._M_swap(__r._M_refcount); __r._M_ptr = nullptr; } template> explicit __shared_ptr(const __weak_ptr<_Yp, _Lp>& __r) : _M_refcount(__r._M_refcount) // may throw { // It is now safe to copy __r._M_ptr, as // _M_refcount(__r._M_refcount) did not throw. _M_ptr = __r._M_ptr; } // If an exception is thrown this constructor has no effect. template> __shared_ptr(unique_ptr<_Yp, _Del>&& __r) : _M_ptr(__r.get()), _M_refcount() { auto __raw = __to_address(__r.get()); _M_refcount = __shared_count<_Lp>(std::move(__r)); _M_enable_shared_from_this_with(__raw); } #if __cplusplus <= 201402L && _GLIBCXX_USE_DEPRECATED protected: // If an exception is thrown this constructor has no effect. template>, is_array<_Tp1>, is_convertible::pointer, _Tp*> >::value, bool>::type = true> __shared_ptr(unique_ptr<_Tp1, _Del>&& __r, __sp_array_delete) : _M_ptr(__r.get()), _M_refcount() { auto __raw = __to_address(__r.get()); _M_refcount = __shared_count<_Lp>(std::move(__r)); _M_enable_shared_from_this_with(__raw); } public: #endif #if _GLIBCXX_USE_DEPRECATED #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wdeprecated-declarations" // Postcondition: use_count() == 1 and __r.get() == 0 template> __shared_ptr(auto_ptr<_Yp>&& __r); #pragma GCC diagnostic pop #endif constexpr __shared_ptr(nullptr_t) noexcept : __shared_ptr() { } template _Assignable<_Yp> operator=(const __shared_ptr<_Yp, _Lp>& __r) noexcept { _M_ptr = __r._M_ptr; _M_refcount = __r._M_refcount; // __shared_count::op= doesn't throw return *this; } #if _GLIBCXX_USE_DEPRECATED #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wdeprecated-declarations" template _Assignable<_Yp> operator=(auto_ptr<_Yp>&& __r) { __shared_ptr(std::move(__r)).swap(*this); return *this; } #pragma GCC diagnostic pop #endif __shared_ptr& operator=(__shared_ptr&& __r) noexcept { __shared_ptr(std::move(__r)).swap(*this); return *this; } template _Assignable<_Yp> operator=(__shared_ptr<_Yp, _Lp>&& __r) noexcept { __shared_ptr(std::move(__r)).swap(*this); return *this; } template _UniqAssignable<_Yp, _Del> operator=(unique_ptr<_Yp, _Del>&& __r) { __shared_ptr(std::move(__r)).swap(*this); return *this; } void reset() noexcept { __shared_ptr().swap(*this); } template _SafeConv<_Yp> reset(_Yp* __p) // _Yp must be complete. { // Catch self-reset errors. __glibcxx_assert(__p == nullptr || __p != _M_ptr); __shared_ptr(__p).swap(*this); } template _SafeConv<_Yp> reset(_Yp* __p, _Deleter __d) { __shared_ptr(__p, std::move(__d)).swap(*this); } template _SafeConv<_Yp> reset(_Yp* __p, _Deleter __d, _Alloc __a) { __shared_ptr(__p, std::move(__d), std::move(__a)).swap(*this); } /// Return the stored pointer. element_type* get() const noexcept { return _M_ptr; } /// Return true if the stored pointer is not null. explicit operator bool() const noexcept { return _M_ptr != nullptr; } /// Return true if use_count() == 1. bool unique() const noexcept { return _M_refcount._M_unique(); } /// If *this owns a pointer, return the number of owners, otherwise zero. long use_count() const noexcept { return _M_refcount._M_get_use_count(); } /// Exchange both the owned pointer and the stored pointer. void swap(__shared_ptr<_Tp, _Lp>& __other) noexcept { std::swap(_M_ptr, __other._M_ptr); _M_refcount._M_swap(__other._M_refcount); } /** @brief Define an ordering based on ownership. * * This function defines a strict weak ordering between two shared_ptr * or weak_ptr objects, such that one object is less than the other * unless they share ownership of the same pointer, or are both empty. * @{ */ template bool owner_before(__shared_ptr<_Tp1, _Lp> const& __rhs) const noexcept { return _M_refcount._M_less(__rhs._M_refcount); } template bool owner_before(__weak_ptr<_Tp1, _Lp> const& __rhs) const noexcept { return _M_refcount._M_less(__rhs._M_refcount); } /// @} protected: // This constructor is non-standard, it is used by allocate_shared. template __shared_ptr(_Sp_alloc_shared_tag<_Alloc> __tag, _Args&&... __args) : _M_ptr(), _M_refcount(_M_ptr, __tag, std::forward<_Args>(__args)...) { _M_enable_shared_from_this_with(_M_ptr); } template friend __shared_ptr<_Tp1, _Lp1> __allocate_shared(const _Alloc& __a, _Args&&... __args); #if __cpp_lib_shared_ptr_arrays >= 201707L // This constructor is non-standard, it is used by allocate_shared. template*> __shared_ptr(const _Sp_counted_array_base<_Alloc>& __a, _Init __init = nullptr) : _M_ptr(), _M_refcount(_M_ptr, __a, __init) { } #endif // This constructor is used by __weak_ptr::lock() and // shared_ptr::shared_ptr(const weak_ptr&, std::nothrow_t). __shared_ptr(const __weak_ptr<_Tp, _Lp>& __r, std::nothrow_t) noexcept : _M_refcount(__r._M_refcount, std::nothrow) { _M_ptr = _M_refcount._M_get_use_count() ? __r._M_ptr : nullptr; } friend class __weak_ptr<_Tp, _Lp>; private: template using __esft_base_t = decltype(__enable_shared_from_this_base( std::declval&>(), std::declval<_Yp*>())); // Detect an accessible and unambiguous enable_shared_from_this base. template struct __has_esft_base : false_type { }; template struct __has_esft_base<_Yp, __void_t<__esft_base_t<_Yp>>> : __not_> { }; // No enable shared_from_this for arrays template::type> typename enable_if<__has_esft_base<_Yp2>::value>::type _M_enable_shared_from_this_with(_Yp* __p) noexcept { if (auto __base = __enable_shared_from_this_base(_M_refcount, __p)) __base->_M_weak_assign(const_cast<_Yp2*>(__p), _M_refcount); } template::type> typename enable_if::value>::type _M_enable_shared_from_this_with(_Yp*) noexcept { } void* _M_get_deleter(const std::type_info& __ti) const noexcept { return _M_refcount._M_get_deleter(__ti); } template friend class __shared_ptr; template friend class __weak_ptr; template friend _Del* get_deleter(const __shared_ptr<_Tp1, _Lp1>&) noexcept; template friend _Del* get_deleter(const shared_ptr<_Tp1>&) noexcept; #if __cplusplus >= 202002L friend _Sp_atomic>; #endif element_type* _M_ptr; // Contained pointer. __shared_count<_Lp> _M_refcount; // Reference counter. }; // 20.7.2.2.7 shared_ptr comparisons template inline bool operator==(const __shared_ptr<_Tp1, _Lp>& __a, const __shared_ptr<_Tp2, _Lp>& __b) noexcept { return __a.get() == __b.get(); } template inline bool operator==(const __shared_ptr<_Tp, _Lp>& __a, nullptr_t) noexcept { return !__a; } #ifdef __cpp_lib_three_way_comparison template inline strong_ordering operator<=>(const __shared_ptr<_Tp, _Lp>& __a, const __shared_ptr<_Up, _Lp>& __b) noexcept { return compare_three_way()(__a.get(), __b.get()); } template inline strong_ordering operator<=>(const __shared_ptr<_Tp, _Lp>& __a, nullptr_t) noexcept { using pointer = typename __shared_ptr<_Tp, _Lp>::element_type*; return compare_three_way()(__a.get(), static_cast(nullptr)); } #else template inline bool operator==(nullptr_t, const __shared_ptr<_Tp, _Lp>& __a) noexcept { return !__a; } template inline bool operator!=(const __shared_ptr<_Tp1, _Lp>& __a, const __shared_ptr<_Tp2, _Lp>& __b) noexcept { return __a.get() != __b.get(); } template inline bool operator!=(const __shared_ptr<_Tp, _Lp>& __a, nullptr_t) noexcept { return (bool)__a; } template inline bool operator!=(nullptr_t, const __shared_ptr<_Tp, _Lp>& __a) noexcept { return (bool)__a; } template inline bool operator<(const __shared_ptr<_Tp, _Lp>& __a, const __shared_ptr<_Up, _Lp>& __b) noexcept { using _Tp_elt = typename __shared_ptr<_Tp, _Lp>::element_type; using _Up_elt = typename __shared_ptr<_Up, _Lp>::element_type; using _Vp = typename common_type<_Tp_elt*, _Up_elt*>::type; return less<_Vp>()(__a.get(), __b.get()); } template inline bool operator<(const __shared_ptr<_Tp, _Lp>& __a, nullptr_t) noexcept { using _Tp_elt = typename __shared_ptr<_Tp, _Lp>::element_type; return less<_Tp_elt*>()(__a.get(), nullptr); } template inline bool operator<(nullptr_t, const __shared_ptr<_Tp, _Lp>& __a) noexcept { using _Tp_elt = typename __shared_ptr<_Tp, _Lp>::element_type; return less<_Tp_elt*>()(nullptr, __a.get()); } template inline bool operator<=(const __shared_ptr<_Tp1, _Lp>& __a, const __shared_ptr<_Tp2, _Lp>& __b) noexcept { return !(__b < __a); } template inline bool operator<=(const __shared_ptr<_Tp, _Lp>& __a, nullptr_t) noexcept { return !(nullptr < __a); } template inline bool operator<=(nullptr_t, const __shared_ptr<_Tp, _Lp>& __a) noexcept { return !(__a < nullptr); } template inline bool operator>(const __shared_ptr<_Tp1, _Lp>& __a, const __shared_ptr<_Tp2, _Lp>& __b) noexcept { return (__b < __a); } template inline bool operator>(const __shared_ptr<_Tp, _Lp>& __a, nullptr_t) noexcept { return nullptr < __a; } template inline bool operator>(nullptr_t, const __shared_ptr<_Tp, _Lp>& __a) noexcept { return __a < nullptr; } template inline bool operator>=(const __shared_ptr<_Tp1, _Lp>& __a, const __shared_ptr<_Tp2, _Lp>& __b) noexcept { return !(__a < __b); } template inline bool operator>=(const __shared_ptr<_Tp, _Lp>& __a, nullptr_t) noexcept { return !(__a < nullptr); } template inline bool operator>=(nullptr_t, const __shared_ptr<_Tp, _Lp>& __a) noexcept { return !(nullptr < __a); } #endif // three-way comparison // 20.7.2.2.8 shared_ptr specialized algorithms. template inline void swap(__shared_ptr<_Tp, _Lp>& __a, __shared_ptr<_Tp, _Lp>& __b) noexcept { __a.swap(__b); } // 20.7.2.2.9 shared_ptr casts // The seemingly equivalent code: // shared_ptr<_Tp, _Lp>(static_cast<_Tp*>(__r.get())) // will eventually result in undefined behaviour, attempting to // delete the same object twice. /// static_pointer_cast template inline __shared_ptr<_Tp, _Lp> static_pointer_cast(const __shared_ptr<_Tp1, _Lp>& __r) noexcept { using _Sp = __shared_ptr<_Tp, _Lp>; return _Sp(__r, static_cast(__r.get())); } // The seemingly equivalent code: // shared_ptr<_Tp, _Lp>(const_cast<_Tp*>(__r.get())) // will eventually result in undefined behaviour, attempting to // delete the same object twice. /// const_pointer_cast template inline __shared_ptr<_Tp, _Lp> const_pointer_cast(const __shared_ptr<_Tp1, _Lp>& __r) noexcept { using _Sp = __shared_ptr<_Tp, _Lp>; return _Sp(__r, const_cast(__r.get())); } // The seemingly equivalent code: // shared_ptr<_Tp, _Lp>(dynamic_cast<_Tp*>(__r.get())) // will eventually result in undefined behaviour, attempting to // delete the same object twice. /// dynamic_pointer_cast template inline __shared_ptr<_Tp, _Lp> dynamic_pointer_cast(const __shared_ptr<_Tp1, _Lp>& __r) noexcept { using _Sp = __shared_ptr<_Tp, _Lp>; if (auto* __p = dynamic_cast(__r.get())) return _Sp(__r, __p); return _Sp(); } #if __cplusplus > 201402L template inline __shared_ptr<_Tp, _Lp> reinterpret_pointer_cast(const __shared_ptr<_Tp1, _Lp>& __r) noexcept { using _Sp = __shared_ptr<_Tp, _Lp>; return _Sp(__r, reinterpret_cast(__r.get())); } #endif template class __weak_ptr { template using _Compatible = typename enable_if<__sp_compatible_with<_Yp*, _Tp*>::value, _Res>::type; // Constraint for assignment from shared_ptr and weak_ptr: template using _Assignable = _Compatible<_Yp, __weak_ptr&>; public: using element_type = typename remove_extent<_Tp>::type; constexpr __weak_ptr() noexcept : _M_ptr(nullptr), _M_refcount() { } __weak_ptr(const __weak_ptr&) noexcept = default; ~__weak_ptr() = default; // The "obvious" converting constructor implementation: // // template // __weak_ptr(const __weak_ptr<_Tp1, _Lp>& __r) // : _M_ptr(__r._M_ptr), _M_refcount(__r._M_refcount) // never throws // { } // // has a serious problem. // // __r._M_ptr may already have been invalidated. The _M_ptr(__r._M_ptr) // conversion may require access to *__r._M_ptr (virtual inheritance). // // It is not possible to avoid spurious access violations since // in multithreaded programs __r._M_ptr may be invalidated at any point. template> __weak_ptr(const __weak_ptr<_Yp, _Lp>& __r) noexcept : _M_refcount(__r._M_refcount) { _M_ptr = __r.lock().get(); } template> __weak_ptr(const __shared_ptr<_Yp, _Lp>& __r) noexcept : _M_ptr(__r._M_ptr), _M_refcount(__r._M_refcount) { } __weak_ptr(__weak_ptr&& __r) noexcept : _M_ptr(__r._M_ptr), _M_refcount(std::move(__r._M_refcount)) { __r._M_ptr = nullptr; } template> __weak_ptr(__weak_ptr<_Yp, _Lp>&& __r) noexcept : _M_ptr(__r.lock().get()), _M_refcount(std::move(__r._M_refcount)) { __r._M_ptr = nullptr; } __weak_ptr& operator=(const __weak_ptr& __r) noexcept = default; template _Assignable<_Yp> operator=(const __weak_ptr<_Yp, _Lp>& __r) noexcept { _M_ptr = __r.lock().get(); _M_refcount = __r._M_refcount; return *this; } template _Assignable<_Yp> operator=(const __shared_ptr<_Yp, _Lp>& __r) noexcept { _M_ptr = __r._M_ptr; _M_refcount = __r._M_refcount; return *this; } __weak_ptr& operator=(__weak_ptr&& __r) noexcept { _M_ptr = __r._M_ptr; _M_refcount = std::move(__r._M_refcount); __r._M_ptr = nullptr; return *this; } template _Assignable<_Yp> operator=(__weak_ptr<_Yp, _Lp>&& __r) noexcept { _M_ptr = __r.lock().get(); _M_refcount = std::move(__r._M_refcount); __r._M_ptr = nullptr; return *this; } __shared_ptr<_Tp, _Lp> lock() const noexcept { return __shared_ptr(*this, std::nothrow); } long use_count() const noexcept { return _M_refcount._M_get_use_count(); } bool expired() const noexcept { return _M_refcount._M_get_use_count() == 0; } template bool owner_before(const __shared_ptr<_Tp1, _Lp>& __rhs) const noexcept { return _M_refcount._M_less(__rhs._M_refcount); } template bool owner_before(const __weak_ptr<_Tp1, _Lp>& __rhs) const noexcept { return _M_refcount._M_less(__rhs._M_refcount); } void reset() noexcept { __weak_ptr().swap(*this); } void swap(__weak_ptr& __s) noexcept { std::swap(_M_ptr, __s._M_ptr); _M_refcount._M_swap(__s._M_refcount); } private: // Used by __enable_shared_from_this. void _M_assign(_Tp* __ptr, const __shared_count<_Lp>& __refcount) noexcept { if (use_count() == 0) { _M_ptr = __ptr; _M_refcount = __refcount; } } template friend class __shared_ptr; template friend class __weak_ptr; friend class __enable_shared_from_this<_Tp, _Lp>; friend class enable_shared_from_this<_Tp>; #if __cplusplus >= 202002L friend _Sp_atomic>; #endif element_type* _M_ptr; // Contained pointer. __weak_count<_Lp> _M_refcount; // Reference counter. }; // 20.7.2.3.6 weak_ptr specialized algorithms. template inline void swap(__weak_ptr<_Tp, _Lp>& __a, __weak_ptr<_Tp, _Lp>& __b) noexcept { __a.swap(__b); } #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wdeprecated-declarations" template struct _Sp_owner_less : public binary_function<_Tp, _Tp, bool> { bool operator()(const _Tp& __lhs, const _Tp& __rhs) const noexcept { return __lhs.owner_before(__rhs); } bool operator()(const _Tp& __lhs, const _Tp1& __rhs) const noexcept { return __lhs.owner_before(__rhs); } bool operator()(const _Tp1& __lhs, const _Tp& __rhs) const noexcept { return __lhs.owner_before(__rhs); } }; #pragma GCC diagnostic pop template<> struct _Sp_owner_less { template auto operator()(const _Tp& __lhs, const _Up& __rhs) const noexcept -> decltype(__lhs.owner_before(__rhs)) { return __lhs.owner_before(__rhs); } using is_transparent = void; }; template struct owner_less<__shared_ptr<_Tp, _Lp>> : public _Sp_owner_less<__shared_ptr<_Tp, _Lp>, __weak_ptr<_Tp, _Lp>> { }; template struct owner_less<__weak_ptr<_Tp, _Lp>> : public _Sp_owner_less<__weak_ptr<_Tp, _Lp>, __shared_ptr<_Tp, _Lp>> { }; template class __enable_shared_from_this { protected: constexpr __enable_shared_from_this() noexcept { } __enable_shared_from_this(const __enable_shared_from_this&) noexcept { } __enable_shared_from_this& operator=(const __enable_shared_from_this&) noexcept { return *this; } ~__enable_shared_from_this() { } public: __shared_ptr<_Tp, _Lp> shared_from_this() { return __shared_ptr<_Tp, _Lp>(this->_M_weak_this); } __shared_ptr shared_from_this() const { return __shared_ptr(this->_M_weak_this); } #if __cplusplus > 201402L || !defined(__STRICT_ANSI__) // c++1z or gnu++11 __weak_ptr<_Tp, _Lp> weak_from_this() noexcept { return this->_M_weak_this; } __weak_ptr weak_from_this() const noexcept { return this->_M_weak_this; } #endif private: template void _M_weak_assign(_Tp1* __p, const __shared_count<_Lp>& __n) const noexcept { _M_weak_this._M_assign(__p, __n); } friend const __enable_shared_from_this* __enable_shared_from_this_base(const __shared_count<_Lp>&, const __enable_shared_from_this* __p) { return __p; } template friend class __shared_ptr; mutable __weak_ptr<_Tp, _Lp> _M_weak_this; }; template inline __shared_ptr<_Tp, _Lp> __allocate_shared(const _Alloc& __a, _Args&&... __args) { static_assert(!is_array<_Tp>::value, "make_shared not supported"); return __shared_ptr<_Tp, _Lp>(_Sp_alloc_shared_tag<_Alloc>{__a}, std::forward<_Args>(__args)...); } template inline __shared_ptr<_Tp, _Lp> __make_shared(_Args&&... __args) { typedef typename std::remove_const<_Tp>::type _Tp_nc; return std::__allocate_shared<_Tp, _Lp>(std::allocator<_Tp_nc>(), std::forward<_Args>(__args)...); } /// std::hash specialization for __shared_ptr. template struct hash<__shared_ptr<_Tp, _Lp>> : public __hash_base> { size_t operator()(const __shared_ptr<_Tp, _Lp>& __s) const noexcept { return hash::element_type*>()( __s.get()); } }; _GLIBCXX_END_NAMESPACE_VERSION } // namespace #endif // _SHARED_PTR_BASE_H