未验证 提交 01e96a8e 编写于 作者: G gongweibao 提交者: GitHub

Add Transformerunittest (#12968)

上级 89d6d69c
......@@ -18,54 +18,129 @@ import numpy as np
import argparse
import time
import math
import os
import sys
import six
import argparse
import ast
import multiprocessing
import time
from functools import partial
from os.path import expanduser
import glob
import random
import tarfile
import paddle
import paddle.fluid as fluid
import paddle.fluid.layers as layers
from paddle.fluid import core
import os
import sys
import six
import transformer_model
import paddle.dataset.wmt16 as wmt16
from test_dist_base import TestDistRunnerBase, runtime_main
from paddle.compat import long_type
import hashlib
from paddle.fluid.transpiler.details import program_to_code
const_para_attr = fluid.ParamAttr(initializer=fluid.initializer.Constant(0.001))
const_bias_attr = const_para_attr
# Fix seed for test
fluid.default_startup_program().random_seed = 1
fluid.default_main_program().random_seed = 1
WMT16_RECORDIO_FILE = "/tmp/wmt16.recordio"
#from transformer_config import ModelHyperParams, TrainTaskConfig, merge_cfg_from_list
class TrainTaskConfig(object):
# only support GPU currently
use_gpu = True
# the epoch number to train.
pass_num = 1
# the number of sequences contained in a mini-batch.
# deprecated, set batch_size in args.
batch_size = 20
# the hyper parameters for Adam optimizer.
# This static learning_rate will be multiplied to the LearningRateScheduler
# derived learning rate the to get the final learning rate.
learning_rate = 1
beta1 = 0.9
beta2 = 0.98
eps = 1e-9
# the parameters for learning rate scheduling.
warmup_steps = 4000
# the weight used to mix up the ground-truth distribution and the fixed
# uniform distribution in label smoothing when training.
# Set this as zero if label smoothing is not wanted.
label_smooth_eps = 0.1
# the directory for saving trained models.
model_dir = "trained_models"
# the directory for saving checkpoints.
ckpt_dir = "trained_ckpts"
# the directory for loading checkpoint.
# If provided, continue training from the checkpoint.
ckpt_path = None
# the parameter to initialize the learning rate scheduler.
# It should be provided if use checkpoints, since the checkpoint doesn't
# include the training step counter currently.
start_step = 0
class ModelHyperParams(object):
# Dictionary size for source and target language. This model directly uses
# paddle.dataset.wmt16 in which <bos>, <eos> and <unk> token has
# alreay been added, but the <pad> token is not added. Transformer requires
# sequences in a mini-batch are padded to have the same length. A <pad> token is
# added into the original dictionary in paddle.dateset.wmt16.
check_acc = True
# size of source word dictionary.
src_vocab_size = 10000
# index for <pad> token in source language.
src_pad_idx = src_vocab_size
data_path = expanduser("~") + (
"/.cache/paddle/dataset/test_dist_transformer/")
src_vocab_fpath = data_path + "vocab.bpe.32000"
trg_vocab_fpath = data_path + "vocab.bpe.32000"
train_file_pattern = data_path + "train.tok.clean.bpe.32000.en-de"
val_file_pattern = data_path + "newstest2013.tok.bpe.32000.en-de"
pool_size = 2000
sort_type = None
local = True
shuffle = False
shuffle_batch = False
special_token = ['<s>', '<e>', '<unk>']
token_delimiter = ' '
use_token_batch = False
# size of target word dictionay
trg_vocab_size = 10000
# index for <pad> token in target language.
trg_pad_idx = trg_vocab_size
# position value corresponding to the <pad> token.
pos_pad_idx = 0
class InferTaskConfig(object):
use_gpu = True
# the number of examples in one run for sequence generation.
batch_size = 10
# the parameters for beam search.
beam_size = 5
max_out_len = 256
# the number of decoded sentences to output.
n_best = 1
# the flags indicating whether to output the special tokens.
output_bos = False
output_eos = False
output_unk = True
# the directory for loading the trained model.
model_path = "trained_models/pass_1.infer.model"
# max length of sequences. It should plus 1 to include position
# padding token for position encoding.
max_length = 50
class ModelHyperParams(object):
# These following five vocabularies related configurations will be set
# automatically according to the passed vocabulary path and special tokens.
# size of source word dictionary.
src_vocab_size = 10000
# size of target word dictionay
trg_vocab_size = 10000
# index for <bos> token
bos_idx = 0
# index for <eos> token
eos_idx = 1
# index for <unk> token
unk_idx = 2
# max length of sequences deciding the size of position encoding table.
# Start from 1 and count start and end tokens in.
max_length = 256
# the dimension for word embeddings, which is also the last dimension of
# the input and output of multi-head attention, position-wise feed-forward
# networks, encoder and decoder.
d_model = 512
# size of the hidden layer in position-wise feed-forward networks.
d_inner_hid = 1024
d_inner_hid = 2048
# the dimension that keys are projected to for dot-product attention.
d_key = 64
# the dimension that values are projected to for dot-product attention.
......@@ -75,95 +150,1521 @@ class ModelHyperParams(object):
# number of sub-layers to be stacked in the encoder and decoder.
n_layer = 6
# dropout rate used by all dropout layers.
dropout = 0.1
dropout = 0.0 # no random
# random seed used in dropout for CE.
dropout_seed = None
# the flag indicating whether to share embedding and softmax weights.
# vocabularies in source and target should be same for weight sharing.
weight_sharing = True
def prepare_batch_input(insts, src_pad_idx, trg_pad_idx, n_head):
def merge_cfg_from_list(cfg_list, g_cfgs):
"""
Set the above global configurations using the cfg_list.
"""
assert len(cfg_list) % 2 == 0
for key, value in zip(cfg_list[0::2], cfg_list[1::2]):
for g_cfg in g_cfgs:
if hasattr(g_cfg, key):
try:
value = eval(value)
except Exception: # for file path
pass
setattr(g_cfg, key, value)
break
# The placeholder for batch_size in compile time. Must be -1 currently to be
# consistent with some ops' infer-shape output in compile time, such as the
# sequence_expand op used in beamsearch decoder.
batch_size = -1
# The placeholder for squence length in compile time.
seq_len = ModelHyperParams.max_length
# Here list the data shapes and data types of all inputs.
# The shapes here act as placeholder and are set to pass the infer-shape in
# compile time.
input_descs = {
# The actual data shape of src_word is:
# [batch_size * max_src_len_in_batch, 1]
"src_word": [(batch_size, seq_len, long_type(1)), "int64", 2],
# The actual data shape of src_pos is:
# [batch_size * max_src_len_in_batch, 1]
"src_pos": [(batch_size, seq_len, long_type(1)), "int64"],
# This input is used to remove attention weights on paddings in the
# encoder.
# The actual data shape of src_slf_attn_bias is:
# [batch_size, n_head, max_src_len_in_batch, max_src_len_in_batch]
"src_slf_attn_bias": [(batch_size, ModelHyperParams.n_head, seq_len,
seq_len), "float32"],
# The actual data shape of trg_word is:
# [batch_size * max_trg_len_in_batch, 1]
"trg_word": [(batch_size, seq_len, long_type(1)), "int64",
2], # lod_level is only used in fast decoder.
# The actual data shape of trg_pos is:
# [batch_size * max_trg_len_in_batch, 1]
"trg_pos": [(batch_size, seq_len, long_type(1)), "int64"],
# This input is used to remove attention weights on paddings and
# subsequent words in the decoder.
# The actual data shape of trg_slf_attn_bias is:
# [batch_size, n_head, max_trg_len_in_batch, max_trg_len_in_batch]
"trg_slf_attn_bias": [(batch_size, ModelHyperParams.n_head, seq_len,
seq_len), "float32"],
# This input is used to remove attention weights on paddings of the source
# input in the encoder-decoder attention.
# The actual data shape of trg_src_attn_bias is:
# [batch_size, n_head, max_trg_len_in_batch, max_src_len_in_batch]
"trg_src_attn_bias": [(batch_size, ModelHyperParams.n_head, seq_len,
seq_len), "float32"],
# This input is used in independent decoder program for inference.
# The actual data shape of enc_output is:
# [batch_size, max_src_len_in_batch, d_model]
"enc_output": [(batch_size, seq_len, ModelHyperParams.d_model), "float32"],
# The actual data shape of label_word is:
# [batch_size * max_trg_len_in_batch, 1]
"lbl_word": [(batch_size * seq_len, long_type(1)), "int64"],
# This input is used to mask out the loss of paddding tokens.
# The actual data shape of label_weight is:
# [batch_size * max_trg_len_in_batch, 1]
"lbl_weight": [(batch_size * seq_len, long_type(1)), "float32"],
# These inputs are used to change the shape tensor in beam-search decoder.
"trg_slf_attn_pre_softmax_shape_delta": [(long_type(2), ), "int32"],
"trg_slf_attn_post_softmax_shape_delta": [(long_type(4), ), "int32"],
"init_score": [(batch_size, long_type(1)), "float32"],
}
# Names of word embedding table which might be reused for weight sharing.
word_emb_param_names = (
"src_word_emb_table",
"trg_word_emb_table", )
# Names of position encoding table which will be initialized externally.
pos_enc_param_names = (
"src_pos_enc_table",
"trg_pos_enc_table", )
# separated inputs for different usages.
encoder_data_input_fields = (
"src_word",
"src_pos",
"src_slf_attn_bias", )
decoder_data_input_fields = (
"trg_word",
"trg_pos",
"trg_slf_attn_bias",
"trg_src_attn_bias",
"enc_output", )
label_data_input_fields = (
"lbl_word",
"lbl_weight", )
# In fast decoder, trg_pos (only containing the current time step) is generated
# by ops and trg_slf_attn_bias is not needed.
fast_decoder_data_input_fields = (
"trg_word",
"init_score",
"trg_src_attn_bias", )
# fast_decoder_util_input_fields = (
# "trg_slf_attn_pre_softmax_shape_delta",
# "trg_slf_attn_post_softmax_shape_delta", )
#from optim import LearningRateScheduler
class LearningRateScheduler(object):
"""
Wrapper for learning rate scheduling as described in the Transformer paper.
LearningRateScheduler adapts the learning rate externally and the adapted
learning rate will be feeded into the main_program as input data.
"""
def __init__(self,
d_model,
warmup_steps,
learning_rate=0.001,
current_steps=0,
name="learning_rate"):
self.current_steps = current_steps
self.warmup_steps = warmup_steps
self.d_model = d_model
self.static_lr = learning_rate
self.learning_rate = layers.create_global_var(
name=name,
shape=[1],
value=float(learning_rate),
dtype="float32",
persistable=True)
def update_learning_rate(self):
self.current_steps += 1
lr_value = np.power(self.d_model, -0.5) * np.min([
np.power(self.current_steps, -0.5),
np.power(self.warmup_steps, -1.5) * self.current_steps
]) * self.static_lr
return np.array([lr_value], dtype="float32")
#from transformer_train import train_loop
def pad_batch_data(insts,
pad_idx,
n_head,
is_target=False,
is_label=False,
return_attn_bias=True,
return_max_len=True,
return_num_token=False):
"""
Pad the instances to the max sequence length in batch, and generate the
corresponding position data and attention bias. Then, convert the numpy
data to tensors and return a dict mapping names to tensors.
corresponding position data and attention bias.
"""
return_list = []
max_len = max(len(inst) for inst in insts)
num_token = reduce(lambda x, y: x + y,
[len(inst) for inst in insts]) if return_num_token else 0
# Any token included in dict can be used to pad, since the paddings' loss
# will be masked out by weights and make no effect on parameter gradients.
inst_data = np.array(
[inst + [pad_idx] * (max_len - len(inst)) for inst in insts])
return_list += [inst_data.astype("int64").reshape([-1, 1])]
if is_label: # label weight
inst_weight = np.array(
[[1.] * len(inst) + [0.] * (max_len - len(inst)) for inst in insts])
return_list += [inst_weight.astype("float32").reshape([-1, 1])]
else: # position data
inst_pos = np.array([
range(1, len(inst) + 1) + [0] * (max_len - len(inst))
for inst in insts
])
return_list += [inst_pos.astype("int64").reshape([-1, 1])]
if return_attn_bias:
if is_target:
# This is used to avoid attention on paddings and subsequent
# words.
slf_attn_bias_data = np.ones((inst_data.shape[0], max_len, max_len))
slf_attn_bias_data = np.triu(slf_attn_bias_data,
1).reshape([-1, 1, max_len, max_len])
slf_attn_bias_data = np.tile(slf_attn_bias_data,
[1, n_head, 1, 1]) * [-1e9]
else:
# This is used to avoid attention on paddings.
slf_attn_bias_data = np.array([[0] * len(inst) + [-1e9] *
(max_len - len(inst))
for inst in insts])
slf_attn_bias_data = np.tile(
slf_attn_bias_data.reshape([-1, 1, 1, max_len]),
[1, n_head, max_len, 1])
return_list += [slf_attn_bias_data.astype("float32")]
if return_max_len:
return_list += [max_len]
if return_num_token:
return_list += [num_token]
return return_list if len(return_list) > 1 else return_list[0]
def prepare_batch_input(insts, data_input_names, src_pad_idx, trg_pad_idx,
n_head, d_model):
"""
Put all padded data needed by training into a dict.
"""
src_word, src_pos, src_slf_attn_bias, src_max_len = pad_batch_data(
[inst[0] for inst in insts], src_pad_idx, n_head, is_target=False)
src_word = src_word.reshape(-1, src_max_len, 1)
src_pos = src_pos.reshape(-1, src_max_len, 1)
trg_word, trg_pos, trg_slf_attn_bias, trg_max_len = pad_batch_data(
[inst[1] for inst in insts], trg_pad_idx, n_head, is_target=True)
trg_word = trg_word.reshape(-1, trg_max_len, 1)
trg_pos = trg_pos.reshape(-1, trg_max_len, 1)
def __pad_batch_data(insts,
pad_idx,
is_target=False,
return_pos=True,
return_attn_bias=True,
return_max_len=True):
"""
Pad the instances to the max sequence length in batch, and generate the
corresponding position data and attention bias.
"""
return_list = []
max_len = max(len(inst) for inst in insts)
inst_data = np.array(
[inst + [pad_idx] * (max_len - len(inst)) for inst in insts])
return_list += [inst_data.astype("int64").reshape([-1, 1])]
if return_pos:
inst_pos = np.array([[
pos_i + 1 if w_i != pad_idx else 0
for pos_i, w_i in enumerate(inst)
] for inst in inst_data])
return_list += [inst_pos.astype("int64").reshape([-1, 1])]
if return_attn_bias:
if is_target:
# This is used to avoid attention on paddings and subsequent
# words.
slf_attn_bias_data = np.ones((inst_data.shape[0], max_len,
max_len))
slf_attn_bias_data = np.triu(slf_attn_bias_data, 1).reshape(
[-1, 1, max_len, max_len])
slf_attn_bias_data = np.tile(slf_attn_bias_data,
[1, n_head, 1, 1]) * [-1e9]
else:
# This is used to avoid attention on paddings.
slf_attn_bias_data = np.array([[0] * len(inst) + [-1e9] *
(max_len - len(inst))
for inst in insts])
slf_attn_bias_data = np.tile(
slf_attn_bias_data.reshape([-1, 1, 1, max_len]),
[1, n_head, max_len, 1])
return_list += [slf_attn_bias_data.astype("float32")]
if return_max_len:
return_list += [max_len]
return return_list if len(return_list) > 1 else return_list[0]
src_word, src_pos, src_slf_attn_bias, src_max_len = __pad_batch_data(
[inst[0] for inst in insts], src_pad_idx, is_target=False)
trg_word, trg_pos, trg_slf_attn_bias, trg_max_len = __pad_batch_data(
[inst[1] for inst in insts], trg_pad_idx, is_target=True)
trg_src_attn_bias = np.tile(src_slf_attn_bias[:, :, ::src_max_len, :],
[1, 1, trg_max_len, 1]).astype("float32")
lbl_word = __pad_batch_data([inst[2] for inst in insts], trg_pad_idx, False,
False, False, False)
lbl_weight = (lbl_word != trg_pad_idx).astype("float32").reshape([-1, 1])
lbl_word, lbl_weight, num_token = pad_batch_data(
[inst[2] for inst in insts],
trg_pad_idx,
n_head,
is_target=False,
is_label=True,
return_attn_bias=False,
return_max_len=False,
return_num_token=True)
data_input_dict = dict(
zip(data_input_names, [
src_word, src_pos, src_slf_attn_bias, trg_word, trg_pos,
trg_slf_attn_bias, trg_src_attn_bias, lbl_word, lbl_weight
]))
return data_input_dict, np.asarray([num_token], dtype="float32")
def read_multiple(reader, count, clip_last=True):
"""
Stack data from reader for multi-devices.
"""
def __impl__():
res = []
for item in reader():
res.append(item)
if len(res) == count:
yield res
res = []
if len(res) == count:
yield res
elif not clip_last:
data = []
for item in res:
data += item
if len(data) > count:
inst_num_per_part = len(data) // count
yield [
data[inst_num_per_part * i:inst_num_per_part * (i + 1)]
for i in range(count)
]
return __impl__
def split_data(data, num_part):
"""
Split data for each device.
"""
if len(data) == num_part:
return data
data = data[0]
inst_num_per_part = len(data) // num_part
return [
src_word, src_pos, trg_word, trg_pos, src_slf_attn_bias,
trg_slf_attn_bias, trg_src_attn_bias, lbl_word, lbl_weight
data[inst_num_per_part * i:inst_num_per_part * (i + 1)]
for i in range(num_part)
]
def transformer(use_feed):
assert not use_feed, "transfomer doesn't support feed yet"
return transformer_model.transformer(
ModelHyperParams.src_vocab_size + 1,
ModelHyperParams.trg_vocab_size + 1, ModelHyperParams.max_length + 1,
ModelHyperParams.n_layer, ModelHyperParams.n_head,
ModelHyperParams.d_key, ModelHyperParams.d_value,
ModelHyperParams.d_model, ModelHyperParams.d_inner_hid,
ModelHyperParams.dropout, ModelHyperParams.src_pad_idx,
ModelHyperParams.trg_pad_idx, ModelHyperParams.pos_pad_idx)
def test_context(train_progm, avg_cost, train_exe, dev_count, data_input_names,
sum_cost, token_num):
# Context to do validation.
test_program = train_progm.clone()
with fluid.program_guard(test_program):
test_program = fluid.io.get_inference_program([avg_cost])
val_data = DataReader(
src_vocab_fpath=TrainTaskConfig.src_vocab_fpath,
trg_vocab_fpath=TrainTaskConfig.trg_vocab_fpath,
fpattern=TrainTaskConfig.val_file_pattern,
token_delimiter=TrainTaskConfig.token_delimiter,
use_token_batch=TrainTaskConfig.use_token_batch,
batch_size=TrainTaskConfig.batch_size *
(1 if TrainTaskConfig.use_token_batch else dev_count),
pool_size=TrainTaskConfig.pool_size,
sort_type=TrainTaskConfig.sort_type,
start_mark=TrainTaskConfig.special_token[0],
end_mark=TrainTaskConfig.special_token[1],
unk_mark=TrainTaskConfig.special_token[2],
# count start and end tokens out
max_length=ModelHyperParams.max_length - 2,
clip_last_batch=False,
shuffle=False,
shuffle_batch=False)
build_strategy = fluid.BuildStrategy()
strategy = fluid.ExecutionStrategy()
strategy.num_threads = 1
test_exe = fluid.ParallelExecutor(
use_cuda=TrainTaskConfig.use_gpu,
main_program=test_program,
share_vars_from=train_exe,
build_strategy=build_strategy,
exec_strategy=strategy)
def test(exe=test_exe):
test_total_cost = 0
test_total_token = 0
test_data = read_multiple(
reader=val_data.batch_generator,
count=dev_count if TrainTaskConfig.use_token_batch else 1)
for batch_id, data in enumerate(test_data()):
feed_list = []
for place_id, data_buffer in enumerate(
split_data(
data, num_part=dev_count)):
data_input_dict, _ = prepare_batch_input(
data_buffer, data_input_names, ModelHyperParams.eos_idx,
ModelHyperParams.eos_idx, ModelHyperParams.n_head,
ModelHyperParams.d_model)
feed_list.append(data_input_dict)
outs = exe.run(feed=feed_list,
fetch_list=[sum_cost.name, token_num.name])
sum_cost_val, token_num_val = np.array(outs[0]), np.array(outs[1])
test_total_cost += sum_cost_val.sum()
test_total_token += token_num_val.sum()
test_avg_cost = test_total_cost / test_total_token
test_ppl = np.exp([min(test_avg_cost, 100)])
return test_avg_cost, test_ppl
return test
def train_loop(exe, train_progm, dev_count, sum_cost, avg_cost, lr_scheduler,
token_num, predict):
# Initialize the parameters.
if TrainTaskConfig.ckpt_path:
lr_scheduler.current_steps = TrainTaskConfig.start_step
else:
exe.run(fluid.framework.default_startup_program())
train_data = DataReader(
src_vocab_fpath=TrainTaskConfig.src_vocab_fpath,
trg_vocab_fpath=TrainTaskConfig.trg_vocab_fpath,
fpattern=TrainTaskConfig.train_file_pattern,
token_delimiter=TrainTaskConfig.token_delimiter,
use_token_batch=TrainTaskConfig.use_token_batch,
batch_size=TrainTaskConfig.batch_size *
(1 if TrainTaskConfig.use_token_batch else dev_count),
pool_size=TrainTaskConfig.pool_size,
sort_type=TrainTaskConfig.sort_type,
shuffle=TrainTaskConfig.shuffle,
shuffle_batch=TrainTaskConfig.shuffle_batch,
start_mark=TrainTaskConfig.special_token[0],
end_mark=TrainTaskConfig.special_token[1],
unk_mark=TrainTaskConfig.special_token[2],
# count start and end tokens out
max_length=ModelHyperParams.max_length - 2,
clip_last_batch=False)
train_data = read_multiple(
reader=train_data.batch_generator,
count=dev_count if TrainTaskConfig.use_token_batch else 1)
build_strategy = fluid.BuildStrategy()
# Since the token number differs among devices, customize gradient scale to
# use token average cost among multi-devices. and the gradient scale is
# `1 / token_number` for average cost.
build_strategy.gradient_scale_strategy = fluid.BuildStrategy.GradientScaleStrategy.Customized
strategy = fluid.ExecutionStrategy()
strategy.num_threads = 1
train_exe = fluid.ParallelExecutor(
use_cuda=TrainTaskConfig.use_gpu,
loss_name=sum_cost.name,
main_program=train_progm,
build_strategy=build_strategy,
exec_strategy=strategy)
data_input_names = encoder_data_input_fields + decoder_data_input_fields[:
-1] + label_data_input_fields
if TrainTaskConfig.val_file_pattern is not None:
test = test_context(train_progm, avg_cost, train_exe, dev_count,
data_input_names, sum_cost, token_num)
# the best cross-entropy value with label smoothing
loss_normalizer = -((1. - TrainTaskConfig.label_smooth_eps) * np.log(
(1. - TrainTaskConfig.label_smooth_eps
)) + TrainTaskConfig.label_smooth_eps *
np.log(TrainTaskConfig.label_smooth_eps / (
ModelHyperParams.trg_vocab_size - 1) + 1e-20))
init = False
for pass_id in xrange(TrainTaskConfig.pass_num):
pass_start_time = time.time()
for batch_id, data in enumerate(train_data()):
if batch_id >= 5:
break
feed_list = []
total_num_token = 0
#if TrainTaskConfig.local:
# lr_rate = lr_scheduler.update_learning_rate()
#for place_id, data_buffer in enumerate(
# split_data(
# data, num_part=dev_count)):
if TrainTaskConfig.local:
lr_rate = lr_scheduler.update_learning_rate()
for place_id, data_buffer in enumerate(
split_data(
data, num_part=dev_count)):
data_input_dict, num_token = prepare_batch_input(
data_buffer, data_input_names, ModelHyperParams.eos_idx,
ModelHyperParams.eos_idx, ModelHyperParams.n_head,
ModelHyperParams.d_model)
total_num_token += num_token
feed_kv_pairs = data_input_dict.items()
if TrainTaskConfig.local:
feed_kv_pairs += {
lr_scheduler.learning_rate.name: lr_rate
}.items()
feed_list.append(dict(feed_kv_pairs))
if not init:
for pos_enc_param_name in pos_enc_param_names:
pos_enc = position_encoding_init(
ModelHyperParams.max_length + 1,
ModelHyperParams.d_model)
feed_list[place_id][pos_enc_param_name] = pos_enc
if not TrainTaskConfig.check_acc:
for feed_dict in feed_list:
feed_dict[sum_cost.name + "@GRAD"] = 1. / total_num_token
else:
b = 100 * TrainTaskConfig.batch_size
a = np.asarray([b], dtype="float32")
for feed_dict in feed_list:
feed_dict[sum_cost.name + "@GRAD"] = 1. / a
outs = train_exe.run(fetch_list=[sum_cost.name, token_num.name],
feed=feed_list)
sum_cost_val, token_num_val = np.array(outs[0]), np.array(outs[1])
total_sum_cost = sum_cost_val.sum()
total_token_num = token_num_val.sum()
total_avg_cost = total_sum_cost / total_token_num
init = True
# Validate and save the model for inference.
if TrainTaskConfig.val_file_pattern is not None:
val_avg_cost, val_ppl = test()
print("[%f]" % val_avg_cost)
else:
assert (False)
#import transformer_reader as reader
class SortType(object):
GLOBAL = 'global'
POOL = 'pool'
NONE = "none"
class Converter(object):
def __init__(self, vocab, beg, end, unk, delimiter):
self._vocab = vocab
self._beg = beg
self._end = end
self._unk = unk
self._delimiter = delimiter
def __call__(self, sentence):
return [self._beg] + [
self._vocab.get(w, self._unk)
for w in sentence.split(self._delimiter)
] + [self._end]
class ComposedConverter(object):
def __init__(self, converters):
self._converters = converters
def __call__(self, parallel_sentence):
return [
self._converters[i](parallel_sentence[i])
for i in range(len(self._converters))
]
class SentenceBatchCreator(object):
def __init__(self, batch_size):
self.batch = []
self._batch_size = batch_size
def append(self, info):
self.batch.append(info)
if len(self.batch) == self._batch_size:
tmp = self.batch
self.batch = []
return tmp
class TokenBatchCreator(object):
def __init__(self, batch_size):
self.batch = []
self.max_len = -1
self._batch_size = batch_size
def append(self, info):
cur_len = info.max_len
max_len = max(self.max_len, cur_len)
if max_len * (len(self.batch) + 1) > self._batch_size:
result = self.batch
self.batch = [info]
self.max_len = cur_len
return result
else:
self.max_len = max_len
self.batch.append(info)
class SampleInfo(object):
def __init__(self, i, max_len, min_len):
self.i = i
self.min_len = min_len
self.max_len = max_len
class MinMaxFilter(object):
def __init__(self, max_len, min_len, underlying_creator):
self._min_len = min_len
self._max_len = max_len
self._creator = underlying_creator
def append(self, info):
if info.max_len > self._max_len or info.min_len < self._min_len:
return
else:
return self._creator.append(info)
@property
def batch(self):
return self._creator.batch
class DataReader(object):
"""
The data reader loads all data from files and produces batches of data
in the way corresponding to settings.
An example of returning a generator producing data batches whose data
is shuffled in each pass and sorted in each pool:
```
train_data = DataReader(
src_vocab_fpath='data/src_vocab_file',
trg_vocab_fpath='data/trg_vocab_file',
fpattern='data/part-*',
use_token_batch=True,
batch_size=2000,
pool_size=10000,
sort_type=SortType.POOL,
shuffle=True,
shuffle_batch=True,
start_mark='<s>',
end_mark='<e>',
unk_mark='<unk>',
clip_last_batch=False).batch_generator
```
:param src_vocab_fpath: The path of vocabulary file of source language.
:type src_vocab_fpath: basestring
:param trg_vocab_fpath: The path of vocabulary file of target language.
:type trg_vocab_fpath: basestring
:param fpattern: The pattern to match data files.
:type fpattern: basestring
:param batch_size: The number of sequences contained in a mini-batch.
or the maximum number of tokens (include paddings) contained in a
mini-batch.
:type batch_size: int
:param pool_size: The size of pool buffer.
:type pool_size: int
:param sort_type: The grain to sort by length: 'global' for all
instances; 'pool' for instances in pool; 'none' for no sort.
:type sort_type: basestring
:param clip_last_batch: Whether to clip the last uncompleted batch.
:type clip_last_batch: bool
:param tar_fname: The data file in tar if fpattern matches a tar file.
:type tar_fname: basestring
:param min_length: The minimum length used to filt sequences.
:type min_length: int
:param max_length: The maximum length used to filt sequences.
:type max_length: int
:param shuffle: Whether to shuffle all instances.
:type shuffle: bool
:param shuffle_batch: Whether to shuffle the generated batches.
:type shuffle_batch: bool
:param use_token_batch: Whether to produce batch data according to
token number.
:type use_token_batch: bool
:param field_delimiter: The delimiter used to split source and target in
each line of data file.
:type field_delimiter: basestring
:param token_delimiter: The delimiter used to split tokens in source or
target sentences.
:type token_delimiter: basestring
:param start_mark: The token representing for the beginning of
sentences in dictionary.
:type start_mark: basestring
:param end_mark: The token representing for the end of sentences
in dictionary.
:type end_mark: basestring
:param unk_mark: The token representing for unknown word in dictionary.
:type unk_mark: basestring
:param seed: The seed for random.
:type seed: int
"""
def __init__(self,
src_vocab_fpath,
trg_vocab_fpath,
fpattern,
batch_size,
pool_size,
sort_type=SortType.GLOBAL,
clip_last_batch=True,
tar_fname=None,
min_length=0,
max_length=100,
shuffle=True,
shuffle_batch=False,
use_token_batch=False,
field_delimiter="\t",
token_delimiter=" ",
start_mark="<s>",
end_mark="<e>",
unk_mark="<unk>",
seed=0):
self._src_vocab = self.load_dict(src_vocab_fpath)
self._only_src = True
if trg_vocab_fpath is not None:
self._trg_vocab = self.load_dict(trg_vocab_fpath)
self._only_src = False
self._pool_size = pool_size
self._batch_size = batch_size
self._use_token_batch = use_token_batch
self._sort_type = sort_type
self._clip_last_batch = clip_last_batch
self._shuffle = shuffle
self._shuffle_batch = shuffle_batch
self._min_length = min_length
self._max_length = max_length
self._field_delimiter = field_delimiter
self._token_delimiter = token_delimiter
self.load_src_trg_ids(end_mark, fpattern, start_mark, tar_fname,
unk_mark)
self._random = random.Random(x=seed)
def load_src_trg_ids(self, end_mark, fpattern, start_mark, tar_fname,
unk_mark):
converters = [
Converter(
vocab=self._src_vocab,
beg=self._src_vocab[start_mark],
end=self._src_vocab[end_mark],
unk=self._src_vocab[unk_mark],
delimiter=self._token_delimiter)
]
if not self._only_src:
converters.append(
Converter(
vocab=self._trg_vocab,
beg=self._trg_vocab[start_mark],
end=self._trg_vocab[end_mark],
unk=self._trg_vocab[unk_mark],
delimiter=self._token_delimiter))
converters = ComposedConverter(converters)
self._src_seq_ids = []
self._trg_seq_ids = None if self._only_src else []
self._sample_infos = []
for i, line in enumerate(self._load_lines(fpattern, tar_fname)):
src_trg_ids = converters(line)
self._src_seq_ids.append(src_trg_ids[0])
lens = [len(src_trg_ids[0])]
if not self._only_src:
self._trg_seq_ids.append(src_trg_ids[1])
lens.append(len(src_trg_ids[1]))
self._sample_infos.append(SampleInfo(i, max(lens), min(lens)))
def _load_lines(self, fpattern, tar_fname):
fpaths = glob.glob(fpattern)
if len(fpaths) == 1 and tarfile.is_tarfile(fpaths[0]):
if tar_fname is None:
raise Exception("If tar file provided, please set tar_fname.")
f = tarfile.open(fpaths[0], "r")
for line in f.extractfile(tar_fname):
fields = line.strip("\n").split(self._field_delimiter)
if (not self._only_src and len(fields) == 2) or (
self._only_src and len(fields) == 1):
yield fields
else:
for fpath in fpaths:
if not os.path.isfile(fpath):
raise IOError("Invalid file: %s" % fpath)
with open(fpath, "r") as f:
for line in f:
fields = line.strip("\n").split(self._field_delimiter)
if (not self._only_src and len(fields) == 2) or (
self._only_src and len(fields) == 1):
yield fields
@staticmethod
def load_dict(dict_path, reverse=False):
word_dict = {}
with open(dict_path, "r") as fdict:
for idx, line in enumerate(fdict):
if reverse:
word_dict[idx] = line.strip("\n")
else:
word_dict[line.strip("\n")] = idx
return word_dict
def batch_generator(self):
# global sort or global shuffle
if self._sort_type == SortType.GLOBAL:
infos = sorted(
self._sample_infos, key=lambda x: x.max_len, reverse=True)
else:
if self._shuffle:
infos = self._sample_infos
self._random.shuffle(infos)
else:
infos = self._sample_infos
if self._sort_type == SortType.POOL:
for i in range(0, len(infos), self._pool_size):
infos[i:i + self._pool_size] = sorted(
infos[i:i + self._pool_size], key=lambda x: x.max_len)
# concat batch
batches = []
batch_creator = TokenBatchCreator(
self._batch_size
) if self._use_token_batch else SentenceBatchCreator(self._batch_size)
batch_creator = MinMaxFilter(self._max_length, self._min_length,
batch_creator)
for info in infos:
batch = batch_creator.append(info)
if batch is not None:
batches.append(batch)
if not self._clip_last_batch and len(batch_creator.batch) != 0:
batches.append(batch_creator.batch)
if self._shuffle_batch:
self._random.shuffle(batches)
for batch in batches:
batch_ids = [info.i for info in batch]
if self._only_src:
yield [[self._src_seq_ids[idx]] for idx in batch_ids]
else:
yield [(self._src_seq_ids[idx], self._trg_seq_ids[idx][:-1],
self._trg_seq_ids[idx][1:]) for idx in batch_ids]
#from transformer_model import transformer
def position_encoding_init(n_position, d_pos_vec):
"""
Generate the initial values for the sinusoid position encoding table.
"""
position_enc = np.array([[
pos / np.power(10000, 2 * (j // 2) / d_pos_vec)
for j in range(d_pos_vec)
] if pos != 0 else np.zeros(d_pos_vec) for pos in range(n_position)])
position_enc[1:, 0::2] = np.sin(position_enc[1:, 0::2]) # dim 2i
position_enc[1:, 1::2] = np.cos(position_enc[1:, 1::2]) # dim 2i+1
return position_enc.astype("float32")
def multi_head_attention(queries,
keys,
values,
attn_bias,
d_key,
d_value,
d_model,
n_head=1,
dropout_rate=0.,
cache=None):
"""
Multi-Head Attention. Note that attn_bias is added to the logit before
computing softmax activiation to mask certain selected positions so that
they will not considered in attention weights.
"""
if not (len(queries.shape) == len(keys.shape) == len(values.shape) == 3):
raise ValueError(
"Inputs: quries, keys and values should all be 3-D tensors.")
def __compute_qkv(queries, keys, values, n_head, d_key, d_value):
"""
Add linear projection to queries, keys, and values.
"""
q = layers.fc(input=queries,
size=d_key * n_head,
num_flatten_dims=2,
param_attr=const_para_attr,
bias_attr=const_bias_attr)
k = layers.fc(input=keys,
size=d_key * n_head,
num_flatten_dims=2,
param_attr=const_para_attr,
bias_attr=const_bias_attr)
v = layers.fc(input=values,
size=d_value * n_head,
num_flatten_dims=2,
param_attr=const_para_attr,
bias_attr=const_bias_attr)
return q, k, v
def __split_heads(x, n_head):
"""
Reshape the last dimension of inpunt tensor x so that it becomes two
dimensions and then transpose. Specifically, input a tensor with shape
[bs, max_sequence_length, n_head * hidden_dim] then output a tensor
with shape [bs, n_head, max_sequence_length, hidden_dim].
"""
if n_head == 1:
return x
hidden_size = x.shape[-1]
# The value 0 in shape attr means copying the corresponding dimension
# size of the input as the output dimension size.
reshaped = layers.reshape(
x=x, shape=[0, 0, n_head, hidden_size // n_head])
# permuate the dimensions into:
# [batch_size, n_head, max_sequence_len, hidden_size_per_head]
return layers.transpose(x=reshaped, perm=[0, 2, 1, 3])
def __combine_heads(x):
"""
Transpose and then reshape the last two dimensions of inpunt tensor x
so that it becomes one dimension, which is reverse to __split_heads.
"""
if len(x.shape) == 3: return x
if len(x.shape) != 4:
raise ValueError("Input(x) should be a 4-D Tensor.")
trans_x = layers.transpose(x, perm=[0, 2, 1, 3])
# The value 0 in shape attr means copying the corresponding dimension
# size of the input as the output dimension size.
return layers.reshape(
x=trans_x,
shape=map(int, [0, 0, trans_x.shape[2] * trans_x.shape[3]]))
def scaled_dot_product_attention(q, k, v, attn_bias, d_model, dropout_rate):
"""
Scaled Dot-Product Attention
"""
scaled_q = layers.scale(x=q, scale=d_model**-0.5)
product = layers.matmul(x=scaled_q, y=k, transpose_y=True)
if attn_bias:
product += attn_bias
weights = layers.softmax(product)
if dropout_rate:
weights = layers.dropout(
weights,
dropout_prob=dropout_rate,
seed=ModelHyperParams.dropout_seed,
is_test=False)
out = layers.matmul(weights, v)
return out
q, k, v = __compute_qkv(queries, keys, values, n_head, d_key, d_value)
if cache is not None: # use cache and concat time steps
k = cache["k"] = layers.concat([cache["k"], k], axis=1)
v = cache["v"] = layers.concat([cache["v"], v], axis=1)
q = __split_heads(q, n_head)
k = __split_heads(k, n_head)
v = __split_heads(v, n_head)
ctx_multiheads = scaled_dot_product_attention(q, k, v, attn_bias, d_model,
dropout_rate)
out = __combine_heads(ctx_multiheads)
# Project back to the model size.
proj_out = layers.fc(input=out,
size=d_model,
num_flatten_dims=2,
param_attr=const_para_attr,
bias_attr=const_bias_attr)
return proj_out
def positionwise_feed_forward(x, d_inner_hid, d_hid):
"""
Position-wise Feed-Forward Networks.
This module consists of two linear transformations with a ReLU activation
in between, which is applied to each position separately and identically.
"""
hidden = layers.fc(input=x,
size=d_inner_hid,
num_flatten_dims=2,
act="relu",
param_attr=const_para_attr,
bias_attr=const_bias_attr)
out = layers.fc(input=hidden,
size=d_hid,
num_flatten_dims=2,
param_attr=const_para_attr,
bias_attr=const_bias_attr)
return out
def pre_post_process_layer(prev_out, out, process_cmd, dropout_rate=0.):
"""
Add residual connection, layer normalization and droput to the out tensor
optionally according to the value of process_cmd.
This will be used before or after multi-head attention and position-wise
feed-forward networks.
"""
for cmd in process_cmd:
if cmd == "a": # add residual connection
out = out + prev_out if prev_out else out
elif cmd == "n": # add layer normalization
out = layers.layer_norm(
out,
begin_norm_axis=len(out.shape) - 1,
param_attr=fluid.initializer.Constant(1.),
bias_attr=fluid.initializer.Constant(0.))
elif cmd == "d": # add dropout
if dropout_rate:
out = layers.dropout(
out,
dropout_prob=dropout_rate,
seed=ModelHyperParams.dropout_seed,
is_test=False)
return out
pre_process_layer = partial(pre_post_process_layer, None)
post_process_layer = pre_post_process_layer
def prepare_encoder(src_word,
src_pos,
src_vocab_size,
src_emb_dim,
src_max_len,
dropout_rate=0.,
word_emb_param_name=None,
pos_enc_param_name=None):
"""Add word embeddings and position encodings.
The output tensor has a shape of:
[batch_size, max_src_length_in_batch, d_model].
This module is used at the bottom of the encoder stacks.
"""
if TrainTaskConfig.check_acc:
src_word_emb = layers.embedding(
src_word,
size=[src_vocab_size, src_emb_dim],
param_attr=fluid.ParamAttr(
name=word_emb_param_name,
initializer=fluid.initializer.ConstantInitializer(0.001)))
else:
src_word_emb = layers.embedding(
src_word,
size=[src_vocab_size, src_emb_dim],
param_attr=fluid.ParamAttr(
name=word_emb_param_name,
initializer=fluid.initializer.Normal(0., src_emb_dim**-0.5)))
src_word_emb = layers.scale(x=src_word_emb, scale=src_emb_dim**0.5)
src_pos_enc = layers.embedding(
src_pos,
size=[src_max_len, src_emb_dim],
param_attr=fluid.ParamAttr(
name=pos_enc_param_name,
trainable=False,
initializer=fluid.initializer.ConstantInitializer(0.001)))
enc_input = src_word_emb + src_pos_enc
return layers.dropout(
enc_input,
dropout_prob=dropout_rate,
seed=ModelHyperParams.dropout_seed,
is_test=False) if dropout_rate else enc_input
prepare_encoder = partial(
prepare_encoder, pos_enc_param_name=pos_enc_param_names[0])
prepare_decoder = partial(
prepare_encoder, pos_enc_param_name=pos_enc_param_names[1])
def encoder_layer(enc_input,
attn_bias,
n_head,
d_key,
d_value,
d_model,
d_inner_hid,
dropout_rate=0.):
"""The encoder layers that can be stacked to form a deep encoder.
This module consits of a multi-head (self) attention followed by
position-wise feed-forward networks and both the two components companied
with the post_process_layer to add residual connection, layer normalization
and droput.
"""
attn_output = multi_head_attention(enc_input, enc_input, enc_input,
attn_bias, d_key, d_value, d_model,
n_head, dropout_rate)
attn_output = post_process_layer(enc_input, attn_output, "dan",
dropout_rate)
ffd_output = positionwise_feed_forward(attn_output, d_inner_hid, d_model)
return post_process_layer(attn_output, ffd_output, "dan", dropout_rate)
def encoder(enc_input,
attn_bias,
n_layer,
n_head,
d_key,
d_value,
d_model,
d_inner_hid,
dropout_rate=0.):
"""
The encoder is composed of a stack of identical layers returned by calling
encoder_layer.
"""
for i in range(n_layer):
enc_output = encoder_layer(enc_input, attn_bias, n_head, d_key, d_value,
d_model, d_inner_hid, dropout_rate)
enc_input = enc_output
return enc_output
def decoder_layer(dec_input,
enc_output,
slf_attn_bias,
dec_enc_attn_bias,
n_head,
d_key,
d_value,
d_model,
d_inner_hid,
dropout_rate=0.,
cache=None):
""" The layer to be stacked in decoder part.
The structure of this module is similar to that in the encoder part except
a multi-head attention is added to implement encoder-decoder attention.
"""
slf_attn_output = multi_head_attention(
dec_input,
dec_input,
dec_input,
slf_attn_bias,
d_key,
d_value,
d_model,
n_head,
dropout_rate,
cache, )
slf_attn_output = post_process_layer(
dec_input,
slf_attn_output,
"dan", # residual connection + dropout + layer normalization
dropout_rate, )
enc_attn_output = multi_head_attention(
slf_attn_output,
enc_output,
enc_output,
dec_enc_attn_bias,
d_key,
d_value,
d_model,
n_head,
dropout_rate, )
enc_attn_output = post_process_layer(
slf_attn_output,
enc_attn_output,
"dan", # residual connection + dropout + layer normalization
dropout_rate, )
ffd_output = positionwise_feed_forward(
enc_attn_output,
d_inner_hid,
d_model, )
dec_output = post_process_layer(
enc_attn_output,
ffd_output,
"dan", # residual connection + dropout + layer normalization
dropout_rate, )
return dec_output
def get_model():
avg_cost = transformer(use_feed=False)
optimizer = fluid.optimizer.Adam()
optimizer.minimize(avg_cost)
fluid.memory_optimize(fluid.default_main_program())
return avg_cost
def decoder(dec_input,
enc_output,
dec_slf_attn_bias,
dec_enc_attn_bias,
n_layer,
n_head,
d_key,
d_value,
d_model,
d_inner_hid,
dropout_rate=0.,
caches=None):
"""
The decoder is composed of a stack of identical decoder_layer layers.
"""
for i in range(n_layer):
cache = None
if caches is not None:
cache = caches[i]
dec_output = decoder_layer(
dec_input,
enc_output,
dec_slf_attn_bias,
dec_enc_attn_bias,
n_head,
d_key,
d_value,
d_model,
d_inner_hid,
dropout_rate,
cache=cache)
dec_input = dec_output
return dec_output
def make_all_inputs(input_fields):
"""
Define the input data layers for the transformer model.
"""
inputs = []
for input_field in input_fields:
input_var = layers.data(
name=input_field,
shape=input_descs[input_field][0],
dtype=input_descs[input_field][1],
lod_level=input_descs[input_field][2]
if len(input_descs[input_field]) == 3 else 0,
append_batch_size=False)
inputs.append(input_var)
return inputs
def transformer(
src_vocab_size,
trg_vocab_size,
max_length,
n_layer,
n_head,
d_key,
d_value,
d_model,
d_inner_hid,
dropout_rate,
weight_sharing,
label_smooth_eps, ):
if weight_sharing:
assert src_vocab_size == src_vocab_size, (
"Vocabularies in source and target should be same for weight sharing."
)
enc_inputs = make_all_inputs(encoder_data_input_fields)
enc_output = wrap_encoder(
src_vocab_size,
max_length,
n_layer,
n_head,
d_key,
d_value,
d_model,
d_inner_hid,
dropout_rate,
weight_sharing,
enc_inputs, )
dec_inputs = make_all_inputs(decoder_data_input_fields[:-1])
predict = wrap_decoder(
trg_vocab_size,
max_length,
n_layer,
n_head,
d_key,
d_value,
d_model,
d_inner_hid,
dropout_rate,
weight_sharing,
dec_inputs,
enc_output, )
# Padding index do not contribute to the total loss. The weights is used to
# cancel padding index in calculating the loss.
label, weights = make_all_inputs(label_data_input_fields)
if label_smooth_eps:
label = layers.label_smooth(
label=layers.one_hot(
input=label, depth=trg_vocab_size),
epsilon=label_smooth_eps)
cost = layers.softmax_with_cross_entropy(
logits=layers.reshape(
predict, shape=[-1, trg_vocab_size]),
label=label,
soft_label=True if label_smooth_eps else False)
weighted_cost = cost * weights
sum_cost = layers.reduce_sum(weighted_cost)
token_num = layers.reduce_sum(weights)
avg_cost = sum_cost / token_num
avg_cost.stop_gradient = True
return sum_cost, avg_cost, predict, token_num
def wrap_encoder(src_vocab_size,
max_length,
n_layer,
n_head,
d_key,
d_value,
d_model,
d_inner_hid,
dropout_rate,
weight_sharing,
enc_inputs=None):
"""
The wrapper assembles together all needed layers for the encoder.
"""
if enc_inputs is None:
# This is used to implement independent encoder program in inference.
src_word, src_pos, src_slf_attn_bias = \
make_all_inputs(encoder_data_input_fields)
else:
src_word, src_pos, src_slf_attn_bias = \
enc_inputs
enc_input = prepare_encoder(
src_word,
src_pos,
src_vocab_size,
d_model,
max_length,
dropout_rate,
word_emb_param_name=word_emb_param_names[0])
enc_output = encoder(enc_input, src_slf_attn_bias, n_layer, n_head, d_key,
d_value, d_model, d_inner_hid, dropout_rate)
return enc_output
def wrap_decoder(trg_vocab_size,
max_length,
n_layer,
n_head,
d_key,
d_value,
d_model,
d_inner_hid,
dropout_rate,
weight_sharing,
dec_inputs=None,
enc_output=None,
caches=None):
"""
The wrapper assembles together all needed layers for the decoder.
"""
if dec_inputs is None:
# This is used to implement independent decoder program in inference.
trg_word, trg_pos, trg_slf_attn_bias, trg_src_attn_bias, \
enc_output = make_all_inputs(
decoder_data_input_fields + decoder_util_input_fields)
else:
trg_word, trg_pos, trg_slf_attn_bias, trg_src_attn_bias = dec_inputs
dec_input = prepare_decoder(
trg_word,
trg_pos,
trg_vocab_size,
d_model,
max_length,
dropout_rate,
word_emb_param_name=word_emb_param_names[0]
if weight_sharing else word_emb_param_names[1])
dec_output = decoder(
dec_input,
enc_output,
trg_slf_attn_bias,
trg_src_attn_bias,
n_layer,
n_head,
d_key,
d_value,
d_model,
d_inner_hid,
dropout_rate,
caches=caches)
# Return logits for training and probs for inference.
if weight_sharing:
predict = layers.matmul(
x=dec_output,
y=fluid.get_var(word_emb_param_names[0]),
transpose_y=True)
else:
predict = layers.fc(input=dec_output,
size=trg_vocab_size,
num_flatten_dims=2,
param_attr=const_para_attr,
bias_attr=const_bias_attr)
if dec_inputs is None:
predict = layers.softmax(predict)
return predict
def fast_decode(
src_vocab_size,
trg_vocab_size,
max_in_len,
n_layer,
n_head,
d_key,
d_value,
d_model,
d_inner_hid,
dropout_rate,
weight_sharing,
beam_size,
max_out_len,
eos_idx, ):
"""
Use beam search to decode. Caches will be used to store states of history
steps which can make the decoding faster.
"""
enc_output = wrap_encoder(src_vocab_size, max_in_len, n_layer, n_head,
d_key, d_value, d_model, d_inner_hid,
dropout_rate, weight_sharing)
start_tokens, init_scores, trg_src_attn_bias = \
make_all_inputs(fast_decoder_data_input_fields )
def beam_search():
max_len = layers.fill_constant(
shape=[1], dtype=start_tokens.dtype, value=max_out_len)
step_idx = layers.fill_constant(
shape=[1], dtype=start_tokens.dtype, value=0)
cond = layers.less_than(x=step_idx, y=max_len)
while_op = layers.While(cond)
# array states will be stored for each step.
ids = layers.array_write(
layers.reshape(start_tokens, (-1, 1)), step_idx)
scores = layers.array_write(init_scores, step_idx)
# cell states will be overwrited at each step.
# caches contains states of history steps to reduce redundant
# computation in decoder.
caches = [{
"k": layers.fill_constant_batch_size_like(
input=start_tokens,
shape=[-1, 0, d_model],
dtype=enc_output.dtype,
value=0),
"v": layers.fill_constant_batch_size_like(
input=start_tokens,
shape=[-1, 0, d_model],
dtype=enc_output.dtype,
value=0)
} for i in range(n_layer)]
with while_op.block():
pre_ids = layers.array_read(array=ids, i=step_idx)
pre_ids = layers.reshape(pre_ids, (-1, 1, 1))
pre_scores = layers.array_read(array=scores, i=step_idx)
# sequence_expand can gather sequences according to lod thus can be
# used in beam search to sift states corresponding to selected ids.
pre_src_attn_bias = layers.sequence_expand(
x=trg_src_attn_bias, y=pre_scores)
pre_enc_output = layers.sequence_expand(x=enc_output, y=pre_scores)
pre_caches = [{
"k": layers.sequence_expand(
x=cache["k"], y=pre_scores),
"v": layers.sequence_expand(
x=cache["v"], y=pre_scores),
} for cache in caches]
pre_pos = layers.elementwise_mul(
x=layers.fill_constant_batch_size_like(
input=pre_enc_output, # cann't use pre_ids here since it has lod
value=1,
shape=[-1, 1, 1],
dtype=pre_ids.dtype),
y=layers.increment(
x=step_idx, value=1.0, in_place=False),
axis=0)
logits = wrap_decoder(
trg_vocab_size,
max_in_len,
n_layer,
n_head,
d_key,
d_value,
d_model,
d_inner_hid,
dropout_rate,
weight_sharing,
dec_inputs=(pre_ids, pre_pos, None, pre_src_attn_bias),
enc_output=pre_enc_output,
caches=pre_caches)
logits = layers.reshape(logits, (-1, trg_vocab_size))
topk_scores, topk_indices = layers.topk(
input=layers.softmax(logits), k=beam_size)
accu_scores = layers.elementwise_add(
x=layers.log(topk_scores),
y=layers.reshape(
pre_scores, shape=[-1]),
axis=0)
# beam_search op uses lod to distinguish branches.
topk_indices = layers.lod_reset(topk_indices, pre_ids)
selected_ids, selected_scores = layers.beam_search(
pre_ids=pre_ids,
pre_scores=pre_scores,
ids=topk_indices,
scores=accu_scores,
beam_size=beam_size,
end_id=eos_idx)
layers.increment(x=step_idx, value=1.0, in_place=True)
# update states
layers.array_write(selected_ids, i=step_idx, array=ids)
layers.array_write(selected_scores, i=step_idx, array=scores)
layers.assign(pre_src_attn_bias, trg_src_attn_bias)
layers.assign(pre_enc_output, enc_output)
for i in range(n_layer):
layers.assign(pre_caches[i]["k"], caches[i]["k"])
layers.assign(pre_caches[i]["v"], caches[i]["v"])
length_cond = layers.less_than(x=step_idx, y=max_len)
finish_cond = layers.logical_not(layers.is_empty(x=selected_ids))
layers.logical_and(x=length_cond, y=finish_cond, out=cond)
finished_ids, finished_scores = layers.beam_search_decode(
ids, scores, beam_size=beam_size, end_id=eos_idx)
return finished_ids, finished_scores
finished_ids, finished_scores = beam_search()
return finished_ids, finished_scores
def get_model(is_dist, is_async):
sum_cost, avg_cost, predict, token_num = transformer(
ModelHyperParams.src_vocab_size, ModelHyperParams.trg_vocab_size,
ModelHyperParams.max_length + 1, ModelHyperParams.n_layer,
ModelHyperParams.n_head, ModelHyperParams.d_key,
ModelHyperParams.d_value, ModelHyperParams.d_model,
ModelHyperParams.d_inner_hid, ModelHyperParams.dropout,
ModelHyperParams.weight_sharing, TrainTaskConfig.label_smooth_eps)
local_lr_scheduler = LearningRateScheduler(ModelHyperParams.d_model,
TrainTaskConfig.warmup_steps,
TrainTaskConfig.learning_rate)
if not is_dist:
optimizer = fluid.optimizer.Adam(
learning_rate=local_lr_scheduler.learning_rate,
beta1=TrainTaskConfig.beta1,
beta2=TrainTaskConfig.beta2,
epsilon=TrainTaskConfig.eps)
optimizer.minimize(sum_cost)
elif is_async:
optimizer = fluid.optimizer.SGD(0.003)
optimizer.minimize(sum_cost)
else:
lr_decay = fluid.layers\
.learning_rate_scheduler\
.noam_decay(ModelHyperParams.d_model,
TrainTaskConfig.warmup_steps)
optimizer = fluid.optimizer.Adam(
learning_rate=lr_decay,
beta1=TrainTaskConfig.beta1,
beta2=TrainTaskConfig.beta2,
epsilon=TrainTaskConfig.eps)
optimizer.minimize(sum_cost)
return sum_cost, avg_cost, predict, token_num, local_lr_scheduler
def get_transpiler(trainer_id, main_program, pserver_endpoints, trainers):
......@@ -176,10 +1677,23 @@ def get_transpiler(trainer_id, main_program, pserver_endpoints, trainers):
return t
class DistTransformer2x2(object):
def update_args():
src_dict = DataReader.load_dict(TrainTaskConfig.src_vocab_fpath)
trg_dict = DataReader.load_dict(TrainTaskConfig.trg_vocab_fpath)
dict_args = [
"src_vocab_size", str(len(src_dict)), "trg_vocab_size",
str(len(trg_dict)), "bos_idx",
str(src_dict[TrainTaskConfig.special_token[0]]), "eos_idx",
str(src_dict[TrainTaskConfig.special_token[1]]), "unk_idx",
str(src_dict[TrainTaskConfig.special_token[2]])
]
merge_cfg_from_list(dict_args, [TrainTaskConfig, ModelHyperParams])
class DistTransformer2x2(TestDistRunnerBase):
def run_pserver(self, pserver_endpoints, trainers, current_endpoint,
trainer_id):
get_model()
trainer_id, sync_mode):
get_model(True, not sync_mode)
t = get_transpiler(trainer_id,
fluid.default_main_program(), pserver_endpoints,
trainers)
......@@ -196,7 +1710,6 @@ class DistTransformer2x2(object):
while True:
assert retry_times >= 0, "wait ps ready failed"
time.sleep(3)
print("waiting ps ready: ", pid)
try:
# the listen_and_serv_op would touch a file which contains the listen port
# on the /tmp directory until it was ready to process all the RPC call.
......@@ -205,63 +1718,35 @@ class DistTransformer2x2(object):
except os.error:
retry_times -= 1
def run_trainer(self, place, endpoints, trainer_id, trainers, is_dist=True):
avg_cost = get_model()
def run_trainer(self,
place,
endpoints,
trainer_id,
trainers,
is_dist=True,
sync_mode=True):
sum_cost, avg_cost, predict, token_num, local_lr_scheduler = get_model(
is_dist, not sync_mode)
if is_dist:
t = get_transpiler(trainer_id,
fluid.default_main_program(), endpoints,
trainers)
trainer_prog = t.get_trainer_program()
TrainTaskConfig.batch_size = 10
TrainTaskConfig.train_file_pattern = TrainTaskConfig.data_path + "train.tok.clean.bpe.32000.en-de.train_{}".format(
trainer_id)
else:
TrainTaskConfig.batch_size = 20
trainer_prog = fluid.default_main_program()
startup_exe = fluid.Executor(place)
startup_exe.run(fluid.default_startup_program())
strategy = fluid.ExecutionStrategy()
strategy.num_threads = 1
strategy.allow_op_delay = False
exe = fluid.ParallelExecutor(
True, loss_name=avg_cost.name, exec_strategy=strategy)
first_loss, = exe.run(fetch_list=[avg_cost.name])
print(first_loss)
for i in six.moves.xrange(5):
_ = exe.run(fetch_list=[avg_cost.name])
last_loss, = exe.run(fetch_list=[avg_cost.name])
print(last_loss)
def main(role="pserver",
endpoints="127.0.0.1:9123",
trainer_id=0,
current_endpoint="127.0.0.1:9123",
trainers=1,
is_dist=True):
reader = paddle.batch(
wmt16.train(ModelHyperParams.src_vocab_size,
ModelHyperParams.trg_vocab_size),
batch_size=transformer_model.batch_size)
with fluid.recordio_writer.create_recordio_writer(
WMT16_RECORDIO_FILE) as writer:
for batch in reader():
for tensor in prepare_batch_input(
batch, ModelHyperParams.src_pad_idx,
ModelHyperParams.trg_pad_idx, ModelHyperParams.n_head):
t = fluid.LoDTensor()
t.set(tensor, fluid.CPUPlace())
writer.append_tensor(t)
writer.complete_append_tensor()
model = DistTransformer2x2()
if role == "pserver":
model.run_pserver(endpoints, trainers, current_endpoint, trainer_id)
else:
p = fluid.CUDAPlace(0) if core.is_compiled_with_cuda(
) else fluid.CPUPlace()
model.run_trainer(p, endpoints, trainer_id, trainers, is_dist)
TrainTaskConfig.local = not is_dist
train_loop(startup_exe, trainer_prog, 1, sum_cost, avg_cost,
local_lr_scheduler, token_num, predict)
if __name__ == "__main__":
......@@ -269,18 +1754,6 @@ if __name__ == "__main__":
print(
"Usage: python dist_transformer.py [pserver/trainer] [endpoints] [trainer_id] [current_endpoint] [trainers] [is_dist] [sync_mode]"
)
role = sys.argv[1]
endpoints = sys.argv[2]
trainer_id = int(sys.argv[3])
current_endpoint = sys.argv[4]
trainers = int(sys.argv[5])
is_dist = True if sys.argv[6] == "TRUE" else False
# FIXME(typhoonzero): refine this test.
is_async = True if sys.argv[7] == "TRUE" else False
main(
role=role,
endpoints=endpoints,
trainer_id=trainer_id,
current_endpoint=current_endpoint,
trainers=trainers,
is_dist=is_dist)
update_args()
runtime_main(DistTransformer2x2)
......@@ -15,17 +15,55 @@
from __future__ import print_function
import unittest
import paddle
from test_dist_base import TestDistBase
class TestDistTransformer2x2(TestDistBase):
def download_files():
url_prefix = 'http://paddle-unittest-data.cdn.bcebos.com/dist_transformer/'
vocab_url = url_prefix + 'vocab.bpe.32000'
vocab_md5 = 'a86d345ca6e27f6591d0dccb1b9be853'
paddle.dataset.common.download(vocab_url, 'test_dist_transformer',
vocab_md5)
local_train_url = url_prefix + 'train.tok.clean.bpe.32000.en-de'
local_train_md5 = '033eb02b9449e6dd823f050782ac8914'
paddle.dataset.common.download(local_train_url, 'test_dist_transformer',
local_train_md5)
train0_url = url_prefix + 'train.tok.clean.bpe.32000.en-de.train_0'
train0_md5 = 'ddce7f602f352a0405267285379a38b1'
paddle.dataset.common.download(train0_url, 'test_dist_transformer',
train0_md5)
train1_url = url_prefix + 'train.tok.clean.bpe.32000.en-de.train_1'
train1_md5 = '8757798200180285b1a619cd7f408747'
paddle.dataset.common.download(train1_url, 'test_dist_transformer',
train1_md5)
test_url = url_prefix + 'newstest2013.tok.bpe.32000.en-de'
test_md5 = '9dd74a266dbdb25314183899f269b4a2'
paddle.dataset.common.download(test_url, 'test_dist_transformer', test_md5)
class TestDistTransformer2x2Sync(TestDistBase):
def _setup_config(self):
self._sync_mode = True
def test_transformer(self):
# TODO(paddle-dev): check if the delta is OK.
# Usually start around ~8000 and converge to ~5000
self.check_with_place("dist_transformer.py", delta=400)
download_files()
#Note: loss on test dataset of the first 5 batch are:
# 10.518872, 10.518871, 10.518868, 10.518862, 10.518855
self.check_with_place("dist_transformer.py", delta=1e-7)
class TestDistTransformer2x2Async(TestDistBase):
def _setup_config(self):
self._sync_mode = False
def test_transformer(self):
download_files()
self.check_with_place("dist_transformer.py", delta=1.0)
if __name__ == "__main__":
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册