--- title: Java 优先级队列PriorityQueue详解:从源码分析到实践应用 shortTitle: 优先级队列PriorityQueue详解 category: - Java核心 tag: - 集合框架(容器) description: 本文详细解析了 Java 优先级队列 PriorityQueue 的实现原理、功能特点以及源码,为您提供了 PriorityQueue 的实际应用示例和性能优化建议。阅读本文,将帮助您更深入地理解 PriorityQueue 在 Java 编程中的应用,从而在实际编程中充分发挥其优势。 head: - - meta - name: keywords content: Java,优先级队列,PriorityQueue,java 优先级队列,java PriorityQueue, 源码分析, 实现原理 --- # 6.13 优先级队列PriorityQueue详解 >继续有请王老师,来上台给大家讲讲优先级队列 PriorityQueue。 PriorityQueue 是 Java 中的一个基于优先级堆的优先队列实现,它能够在 O(log n) 的时间复杂度内实现元素的插入和删除操作,并且能够自动维护队列中元素的优先级顺序。 通俗来说,PriorityQueue 就是一个队列,但是它不是先进先出的,而是按照元素优先级进行排序的。当你往 PriorityQueue 中插入一个元素时,它会自动根据元素的优先级将其插入到合适的位置。当你从 PriorityQueue 中删除一个元素时,它会自动将优先级最高的元素出队。 下面👇🏻是一个简单的PriorityQueue示例: ```java // 创建 PriorityQueue 对象 PriorityQueue priorityQueue = new PriorityQueue<>(); // 添加元素到 PriorityQueue priorityQueue.offer("沉默王二"); priorityQueue.offer("陈清扬"); priorityQueue.offer("小转铃"); // 打印 PriorityQueue 中的元素 System.out.println("PriorityQueue 中的元素:"); while (!priorityQueue.isEmpty()) { System.out.print(priorityQueue.poll() + " "); } ``` 在上述代码中,我们首先创建了一个 PriorityQueue 对象,并向其中添加了三个元素。然后,我们使用 while 循环遍历 PriorityQueue 中的元素,并打印出来。来看输出结果: ``` PriorityQueue 中的元素: 小转铃 沉默王二 陈清扬 ``` 再来看一下示例。 ```java // 创建 PriorityQueue 对象,并指定优先级顺序 PriorityQueue priorityQueue = new PriorityQueue<>(Comparator.reverseOrder()); // 添加元素到 PriorityQueue priorityQueue.offer("沉默王二"); priorityQueue.offer("陈清扬"); priorityQueue.offer("小转铃"); // 打印 PriorityQueue 中的元素 System.out.println("PriorityQueue 中的元素:"); while (!priorityQueue.isEmpty()) { System.out.print(priorityQueue.poll() + " "); } ``` 在上述代码中,我们使用了 Comparator.reverseOrder() 方法指定了 PriorityQueue 的优先级顺序为降序。也就是说,PriorityQueue 中的元素会按照从大到小的顺序排序。 其他部分的代码与之前的例子相同,我们再来看一下输出结果: ``` PriorityQueue 中的元素: 陈清扬 沉默王二 小转铃 ``` 对比一下两个例子的输出结果,不难发现,顺序正好相反。 ### PriorityQueue的作用 PriorityQueue 的主要作用是维护一组数据的排序,使得取出数据时可以按照一定的优先级顺序进行,当我们调用 poll() 方法时,它会从队列的顶部弹出最高优先级的元素。它在很多场景下都有广泛的应用,例如任务调度、事件处理等场景,以及一些算法中需要对数据进行排序的场景。 在实际应用中,PriorityQueue 也经常用于实现 Dijkstra 算法、Prim 算法、Huffman 编码等算法。这里简单说一下这几种算法的作用,理解不了也没关系哈。 Dijkstra算法是一种用于计算带权图中的最短路径的算法。该算法采用贪心的策略,在遍历图的过程中,每次选取当前到源点距离最短的一个顶点,并以它为中心进行扩展,更新其他顶点的距离值。经过多次扩展,可以得到源点到其它所有顶点的最短路径。 Prim算法是一种用于求解最小生成树的算法,可以在加权连通图中找到一棵生成树,使得这棵生成树的所有边的权值之和最小。该算法从任意一个顶点开始,逐渐扩展生成树的规模,每次选择一个距离已生成树最近的顶点加入到生成树中。 Huffman编码是一种基于霍夫曼树的压缩算法,用于将一个字符串转换为二进制编码以进行压缩。该算法的主要思想是通过建立霍夫曼树,将出现频率较高的字符用较短的编码表示,而出现频率较低的字符用较长的编码表示,从而实现对字符串的压缩。在解压缩时,根据编码逐步解析出原字符串。 由于 PriorityQueue 的底层是基于堆实现的,因此在数据量比较大时,使用 PriorityQueue 可以获得较好的时间复杂度。 这里牵涉到了大小关系,**元素大小的评判可以通过元素本身的自然顺序(_natural ordering_),也可以通过构造时传入的比较器**(_Comparator_,或者元素自身实现 Comparable 接口)来决定。 在 PriorityQueue 中,每个元素都有一个优先级,这个优先级决定了元素在队列中的位置。队列内部通过小顶堆(也可以是大顶堆)的方式来维护元素的优先级关系。具体来说,小顶堆是一个完全二叉树,任何一个非叶子节点的权值,都不大于其左右子节点的权值,这样保证了队列的顶部元素(堆顶)一定是优先级最高的元素。 完全二叉树(Complete Binary Tree)是一种二叉树,其中除了最后一层,其他层的节点数都是满的,最后一层的节点都靠左对齐。下面是一个完全二叉树的示意图: ``` 1 / \ 2 3 / \ / 4 5 6 ``` 堆是一种完全二叉树,堆的特点是根节点的值最小(小顶堆)或最大(大顶堆),并且任意非根节点i的值都不大于(或不小于)其父节点的值。 这是一颗包含整数 1, 2, 3, 4, 5, 6, 7 的小顶堆: ``` 1 / \ 2 3 / \ / \ 4 5 6 7 ``` 这是一颗大顶堆。 ``` 8 / \ 7 5 / \ / \ 6 4 2 1 ``` 因为完全二叉树的结构比较规则,所以可以使用数组来存储堆的元素,而不需要使用指针等额外的空间。 在堆中,每个节点的下标和其在数组中的下标是一一对应的,假设节点下标为i,则其父节点下标为i/2,其左子节点下标为2i,其右子节点下标为2i+1。 假设有一个数组arr=[10, 20, 15, 30, 40],现在要将其转化为一个小顶堆。 首先,我们将数组按照完全二叉树的形式排列,如下图所示: ``` 10 / \ 20 15 / \ 30 40 ``` 从上往下、从左往右依次给每个节点编号,如下所示: ``` 1 / \ 2 3 / \ 4 5 ``` 接下来,我们按照上述公式,依次确定每个节点在数组中的位置。例如,节点1的父节点下标为1/2=0,左子节点下标为2\*1=2,右子节点下标为2\*1+1=3,因此节点1在数组中的位置为0,节点2在数组中的位置为2,节点3在数组中的位置为3。 对应的数组为[10, 20, 15, 30, 40],符合小顶堆的定义,即每个节点的值都小于或等于其子节点的值。 好,我们画幅图再来理解一下。 ![](https://cdn.tobebetterjavaer.com/tobebetterjavaer/images/collection/PriorityQueue-8dca2f55-a7c7-49e1-95a5-df1a34f2aef5.png) 上图中我们给每个元素按照层序遍历的方式进行了编号,如果你足够细心,会发现父节点和子节点的编号是有联系的,更确切的说父子节点的编号之间有如下关系: ``` leftNo = parentNo\*2+1 rightNo = parentNo\*2+2 parentNo = (nodeNo-1)/2 ``` 通过上述三个公式,可以轻易计算出某个节点的父节点以及子节点的下标。这也就是为什么可以直接用数组来存储堆的原因。 ### 方法剖析 #### add()和 offer() `add(E e)`和`offer(E e)`的语义相同,都是向优先队列中插入元素,只是`Queue`接口规定二者对插入失败时的处理不同,前者在插入失败时抛出异常,后则则会返回`false`。对于*PriorityQueue*这两个方法其实没什么差别。 ![](https://cdn.tobebetterjavaer.com/tobebetterjavaer/images/collection/PriorityQueue-0fb89aa7-c8fa-4fad-adbb-40c61c3bb0e9.png) 新加入的元素可能会破坏小顶堆的性质,因此需要进行必要的调整。 ```Java //offer(E e) public boolean offer(E e) { if (e == null)//不允许放入null元素 throw new NullPointerException(); modCount++; int i = size; if (i >= queue.length) grow(i + 1);//自动扩容 size = i + 1; if (i == 0)//队列原来为空,这是插入的第一个元素 queue[0] = e; else siftUp(i, e);//调整 return true; } ``` 上述代码中,扩容函数`grow()`类似于`ArrayList`里的`grow()`函数,就是再申请一个更大的数组,并将原数组的元素复制过去,这里不再赘述。需要注意的是`siftUp(int k, E x)`方法,该方法用于插入元素`x`并维持堆的特性。 ```Java //siftUp() private void siftUp(int k, E x) { while (k > 0) { int parent = (k - 1) >>> 1;//parentNo = (nodeNo-1)/2 Object e = queue[parent]; if (comparator.compare(x, (E) e) >= 0)//调用比较器的比较方法 break; queue[k] = e; k = parent; } queue[k] = x; } ``` 调整的过程为:**从`k`指定的位置开始,将`x`逐层与当前点的`parent`进行比较并交换,直到满足`x >= queue[parent]`为止**。注意这里的比较可以是元素的自然顺序,也可以是依靠比较器的顺序。 #### element()和 peek() `element()`和`peek()`的语义完全相同,都是获取但不删除队首元素,也就是队列中权值最小的那个元素,二者唯一的区别是当方法失败时前者抛出异常,后者返回`null`。根据小顶堆的性质,堆顶那个元素就是全局最小的那个;由于堆用数组表示,根据下标关系,`0`下标处的那个元素既是堆顶元素。所以**直接返回数组`0`下标处的那个元素即可**。 ![](https://cdn.tobebetterjavaer.com/tobebetterjavaer/images/collection/PriorityQueue-5059f157-845e-4d1c-b993-5cfe539d5607.png) 代码也就非常简洁: ```Java //peek() public E peek() { if (size == 0) return null; return (E) queue[0];//0下标处的那个元素就是最小的那个 } ``` #### remove()和 poll() `remove()`和`poll()`方法的语义也完全相同,都是获取并删除队首元素,区别是当方法失败时前者抛出异常,后者返回`null`。由于删除操作会改变队列的结构,为维护小顶堆的性质,需要进行必要的调整。 ![PriorityQueue_poll.png](https://cdn.tobebetterjavaer.com/tobebetterjavaer/images/collection/PriorityQueue-e25ba931-2e6f-4c17-84b8-9b959733d541.png) 代码如下: ```Java public E poll() { if (size == 0) return null; int s = --size; modCount++; E result = (E) queue[0];//0下标处的那个元素就是最小的那个 E x = (E) queue[s]; queue[s] = null; if (s != 0) siftDown(0, x);//调整 return result; } ``` 上述代码首先记录`0`下标处的元素,并用最后一个元素替换`0`下标位置的元素,之后调用`siftDown()`方法对堆进行调整,最后返回原来`0`下标处的那个元素(也就是最小的那个元素)。重点是`siftDown(int k, E x)`方法,该方法的作用是**从`k`指定的位置开始,将`x`逐层向下与当前点的左右孩子中较小的那个交换,直到`x`小于或等于左右孩子中的任何一个为止**。 ```Java //siftDown() private void siftDown(int k, E x) { int half = size >>> 1; while (k < half) { //首先找到左右孩子中较小的那个,记录到c里,并用child记录其下标 int child = (k << 1) + 1;//leftNo = parentNo*2+1 Object c = queue[child]; int right = child + 1; if (right < size && comparator.compare((E) c, (E) queue[right]) > 0) c = queue[child = right]; if (comparator.compare(x, (E) c) <= 0) break; queue[k] = c;//然后用c取代原来的值 k = child; } queue[k] = x; } ``` #### remove(Object o) `remove(Object o)`方法用于删除队列中跟`o`相等的某一个元素(如果有多个相等,只删除一个),该方法不是*Queue*接口内的方法,而是*Collection*接口的方法。由于删除操作会改变队列结构,所以要进行调整;又由于删除元素的位置可能是任意的,所以调整过程比其它方法稍加繁琐。 具体来说,`remove(Object o)`可以分为 2 种情况: 1. 删除的是最后一个元素。直接删除即可,不需要调整。 2. 删除的不是最后一个元素,从删除点开始以最后一个元素为参照调用一次`siftDown()`即可。此处不再赘述。 ![](https://cdn.tobebetterjavaer.com/tobebetterjavaer/images/collection/PriorityQueue-ed0d08d3-b38e-44a1-a710-ee7a01afda62.png) 具体代码如下: ```Java //remove(Object o) public boolean remove(Object o) { //通过遍历数组的方式找到第一个满足o.equals(queue[i])元素的下标 int i = indexOf(o); if (i == -1) return false; int s = --size; if (s == i) //情况1 queue[i] = null; else { E moved = (E) queue[s]; queue[s] = null; siftDown(i, moved);//情况2 ...... } return true; } ``` ### 小结 PriorityQueue 是一个非常常用的数据结构,它是一种特殊的堆(Heap)实现,可以用来高效地维护一个有序的集合。 - 它的底层实现是一个数组,通过堆的性质来维护元素的顺序。 - 取出元素时按照优先级顺序(从小到大或者从大到小)进行取出。 - 如果需要指定排序,元素必须实现 Comparable 接口或者传入一个 Comparator 来进行比较。 > 参考链接:[https://github.com/CarpenterLee/JCFInternals](https://github.com/CarpenterLee/JCFInternals),作者:李豪,整理:沉默王二 ---- GitHub 上标星 7600+ 的开源知识库《二哥的 Java 进阶之路》第一版 PDF 终于来了!包括Java基础语法、数组&字符串、OOP、集合框架、Java IO、异常处理、Java 新特性、网络编程、NIO、并发编程、JVM等等,共计 32 万余字,可以说是通俗易懂、风趣幽默……详情戳:[太赞了,GitHub 上标星 7600+ 的 Java 教程](https://tobebetterjavaer.com/overview/) 微信搜 **沉默王二** 或扫描下方二维码关注二哥的原创公众号沉默王二,回复 **222** 即可免费领取。 ![](https://cdn.tobebetterjavaer.com/tobebetterjavaer/images/gongzhonghao.png)