# -*- coding:utf-8 -*- # title :模拟太阳系给天体真实时间和位置 # description :模拟太阳系给天体真实时间和位置 # author :Python超人 # date :2023-07-23 # link :https://gitcode.net/pythoncr/ # python_version :3.8 # ============================================================================== import numpy as np from bodies import Sun, Mercury, Venus, Earth, Mars, Asteroids, Jupiter, Saturn, Uranus, Neptune, Moon from common.celestial_data_service import get_body_posvel, recalc_moon_position, calc_solar_acceleration, \ set_solar_system_celestial_position, set_earth_rotation, get_reality_orbit_points from common.consts import SECONDS_PER_WEEK, SECONDS_PER_DAY, SECONDS_PER_HOUR, AU from sim_scenes.func import ursina_run, create_sphere_sky, create_text_panel from sim_scenes.universe_sim_scenes import UniverseSimScenes from simulators.func import ext_fun_for_method from simulators.ursina.entities.body_timer import TimeData from simulators.ursina.ui.control_ui import ControlUI from simulators.ursina.ursina_config import UrsinaConfig from simulators.ursina.ursina_event import UrsinaEvent from ursina import camera, application from simulators.ursina.ursina_mesh import create_orbit_line, create_orbit_by_points class SolarSystemRealitySim(UniverseSimScenes): """ 以:武汉江城明珠豪生大酒店上面的球为太阳。直径:35米 """ def __init__(self): """ @param debug_mode: 是否为调试模式 """ self.show_asteroids = False self.clock_position_center = False self.show_earth_clouds = False self.debug_mode = False self.recalc_moon_pos = True def create_bodies(self): """ 创建太阳系的天体 @return: """ # 由于宇宙空间尺度非常大,如果按照实际的天体大小,则无法看到天体,因此需要对天体的尺寸进行放大 # 太阳 60倍、 SUN_SIZE_SCALE = 50 SIZE_SCALE_1 = 2000 SIZE_SCALE_2 = 500 SIZE_SCALE_3 = 1500 # 太阳缩放比例 self.sun_size_scale = 0.04e2 if self.debug_mode else SUN_SIZE_SCALE # 地月缩放比例 # 为了更好的展示效果,需要对月球的位置重新计算(使得地月距离放大,月球相对地球方向不变),重新计算位置后,地球和月球可以放大1000倍以上 if self.recalc_moon_pos: # 重新计算月球位置 self.earth_size_scale = 10e3 if self.debug_mode else 1e3 self.moon_size_scale = 2e3 else: # 不重新计算,则地月的距离相对整个太阳系会非常近,因此,月球只放大了10倍 self.earth_size_scale = 1e1 self.moon_size_scale = 1e1 self.sun = Sun(name="太阳", size_scale=self.sun_size_scale) # 太阳 self.sun.sim_d = 3500 # 35米 = 3500厘米 self.sun.glows = None self.mercury = Mercury(name="水星", size_scale=SIZE_SCALE_1) # 水星 self.venus = Venus(name="金星", size_scale=SIZE_SCALE_1) # 金星 self.earth = Earth(name="地球", texture="earth_hd.jpg", rotate_angle=3.44, size_scale=SIZE_SCALE_1) # 地球 self.earth_clouds = Earth(name="地球云层", texture="transparent_clouds.png", show_trail=False, rotate_angle=3.44, size_scale=SIZE_SCALE_1 * 1.01) # 地球云层 # self.moon = Moon(name="月球", size_scale=self.moon_size_scale) # 月球 self.mars = Mars(name="火星", size_scale=SIZE_SCALE_1) # 火星 # self.asteroids = Asteroids(size_scale=1e2, parent=self.sun, rotate_angle=-20) # 模拟的小行星带 self.jupiter = Jupiter(name="木星", size_scale=SIZE_SCALE_2) # 木星 self.saturn = Saturn(name="土星", size_scale=SIZE_SCALE_2) # 土星 self.uranus = Uranus(name="天王星", size_scale=SIZE_SCALE_3) # 天王星 self.neptune = Neptune(name="海王星", size_scale=SIZE_SCALE_3) # 海王星 # 行星 self.planets = [self.mercury, self.venus, self.earth, self.mars, self.jupiter, self.saturn, self.uranus, self.neptune] # 所有天体 self.bodies = [self.sun] + self.planets # + [self.moon] sim_d_r = self.sun.diameter / self.sun.sim_d for body in self.bodies: # print("%s的直径相当于:%.2fcm" % (body.name, body.diameter / sim_d_r)) print("%s的位置相当于:%.2fkm" % (body.name, body.position[2] / (sim_d_r*100*1000))) # 太阳的直径相当于:3500.00cm # 水星的直径相当于:12.27cm # 金星的直径相当于:30.44cm 排球、足球、篮球的直径分别是25~28厘米、21.96~22.04厘米、24.6厘米。 # 地球的直径相当于:32.05cm 排球、足球、篮球的直径分别是25~28厘米、21.96~22.04厘米、24.6厘米。 # 火星的直径相当于:17.04cm # 木星的直径相当于:351.55cm # 土星的直径相当于:292.82cm # 天王星的直径相当于:127.54cm # 海王星的直径相当于:123.80cm # 太阳的位置相当于:0.00km 武汉江城明珠豪生大酒店 35米 # 水星的位置相当于:1.44km 武汉科学技术馆 武汉歌舞剧院 武汉剧院 武汉市中心医院 # 金星的位置相当于:2.71km 龙王庙 徐家棚 不到中山公园 # 地球的位置相当于:3.76km 超过中山公园 沙湖公园 南岸嘴江滩公园 # 火星的位置相当于:5.72km 琴台大剧院 楚河汉街 首义广场 # 木星的位置相当于:19.52km 后官湖 汤逊湖 # 土星的位置相当于:35.73km 西:武汉野生动物王国 # 天王星的位置相当于:72.21km 西:仙桃 # 海王星的位置相当于:115.46km 西:天门 北:大悟 东:大希 南:赤壁 if self.show_earth_clouds: self.bodies += [self.earth_clouds] # if self.show_asteroids: # self.bodies += [self.asteroids] exit() def init_earth(self): """ 初始化地球 @return: """ # 让地球显示自转轴线 # self.earth.rotate_axis_color = (255, 255, 50) # 如果为调试模式,则太阳光对地球无效,方便查看 if self.debug_mode: self.earth.set_light_disable(True) def show_clock(self, dt): """ 显示时钟 @param dt: 时间 datetime @return: """ if self.clock_position_center: position, origin = (0, .25), (0, 0), else: from ursina import window aspect_ratio = window.aspect_ratio position, origin = (0.5 * aspect_ratio - 0.3, -0.465), (-0.5, 0.5), # position, origin = (0.60, -0.465), (-0.5, 0.5), ControlUI.current_ui.show_message(dt.strftime('%Y-%m-%d %H:%M:%S'), position=position, origin=origin, font="verdana.ttf", close_time=-1) def set_bodies_position(self, time_data: TimeData): """ 设置天体的位置(包含速度和加速度的信息) @param time_data: @return: """ t = self.start_time + time_data.total_days set_solar_system_celestial_position(self.bodies, t, self.recalc_moon_pos) def on_ready(self): """ 事件绑定后,模拟器运行前会触发 @return: """ # 运行前触发 self.set_window_size((1919, 1080), False) self.sky = create_sphere_sky(scale=80000) self.create_orbit_lines() camera.clip_plane_near = 0.1 camera.clip_plane_far = 100000 # camera.rotation_z = -20 if self.debug_mode: camera.fov = 30 # 调试时,拉近摄像机距离 # 需要按照时间和日期来控制地球的自转,所以删除控制地球自转的属性 delattr(self.earth.planet, "rotation_speed") delattr(self.earth.planet, "rotspeed") # 设置后,可以调整鼠标键盘的控制速度 application.time_scale = 5 self.text_panel = create_text_panel(font="fonts/DroidSansFallback.ttf", font_scale=1.3) self.text_panel.parent.scale_y /= 6 self.text_panel.scale_y *= 6 def update_text_panel(self): """ 更新文字信息面板 @param d_sun: @return: """ from ursina import distance d_sun = distance(self.sun.planet.position, camera.position) d_sun = d_sun / UrsinaConfig.SCALE_FACTOR / AU panel_text = "当前日距:%s AU" % "{:.2f}".format(d_sun) # .rjust(6, "0") self.text_panel.text = panel_text def on_timer_changed(self, time_data: TimeData): """ 事件绑定后,时时刻刻都会触发 @param time_data: @return: """ dt = time_data.get_datetime(str(self.start_time)) # 设置天体的位置(包含速度和加速度的信息) self.set_bodies_position(time_data) # 保证地球的自转和北京时间同步 set_earth_rotation(self.earth, dt) # 显示时钟 # self.show_clock(dt) self.update_text_panel() def bind_events(self): # 运行中,每时每刻都会触发 on_timer_changed UrsinaEvent.on_timer_changed_subscription(self.on_timer_changed) # 运行前会触发 on_ready UrsinaEvent.on_ready_subscription(self.on_ready) def create_orbit_line(self, center_body, body, start_time, alpha=0.2): import math if not hasattr(body, "orbital_days"): return None orbital_days = int(math.ceil(body.orbital_days)) points = get_reality_orbit_points(type(body).__name__.lower(), start_time=start_time, days=orbital_days, segments=100) # print(points) orbit_line = create_orbit_by_points(center_body.position, points, line_color=body.trail_color, alpha=alpha, thickness=1) return orbit_line def create_orbit_lines(self): """ 创建太阳系天体的真实轨迹(太阳和哈雷彗星除外) @return: """ self.orbit_lines = [] for body in self.bodies[1:]: alpha = 1 orbit_line = self.create_orbit_line(self.sun, body, self.start_time, alpha=alpha) if orbit_line is not None: self.orbit_lines.append(orbit_line) def run(self, debug_mode=False, start_time=None, dt=None, # show_asteroids=False, show_earth_clouds=False, recalc_moon_pos=True, clock_position_center=False): """ 模拟运行 @param debug_mode: 是否调试模式 @param start_time: 运行的开始时间 @param dt: 运行速度(dt的值为秒数,表示1秒相当于dt的秒数) @param show_earth_clouds: 地球是否显示云层(图片效果,不是真实的云层) @param recalc_moon_pos: 为了更好的展示效果,需要对月球的位置重新计算(使得地月距离放大,月球相对地球方向不变) @param clock_position_center: 时钟是否显示在中间 @return: """ self.recalc_moon_pos = recalc_moon_pos self.debug_mode = debug_mode self.clock_position_center = clock_position_center # self.show_asteroids = show_asteroids self.show_earth_clouds = show_earth_clouds # 创建太阳系天体 self.create_bodies() # glows = (glow_num:10, glow_scale:1.03 glow_alpha:0.1~1) # self.sun.glows = (4, 1.005, 0.1) # 对地球进行初始化 self.init_earth() # 绑定事件 self.bind_events() from astropy.time import Time from datetime import datetime # 开始时间为空,则默认为当前时间 if start_time is None: self.start_time = Time.now() # 获取默认开始时间为当前时间 elif isinstance(start_time, str): self.start_time = Time(datetime.strptime(start_time + '+0800', '%Y-%m-%d %H:%M:%S%z'), format='datetime') # from common.image_utils import find_texture # self.sky_texture = find_texture("bg_pan.jpg", None) # if self.sky_texture is None: # cosmic_bg = None # else: # cosmic_bg = '' if dt is None: dt = 1 # 1秒=1秒 self.init_steps() # 使用 ursina 查看的运行效果 # 常用快捷键: P:运行和暂停 O:重新开始 I:显示天体轨迹 # position = 左-右+、上+下-、前+后- ursina_run(self.bodies, dt, position=(0, 0.2 * AU, -3 * AU), gravity_works=False, # 关闭万有引力的计算 show_grid=False, cosmic_bg='', show_camera_info=False, show_exit_button=False, show_control_info=False, timer_enabled=True) def init_steps(self): self.step_index = 0 self.steps = [ self.set_bodies_as_real_scale, lambda: self.enabled_orbit_lines(), lambda: self.recover_body_scale(self.sun), lambda: self.recover_body_scale([self.earth, self.mercury, self.venus, self.mars, self.earth_clouds]), lambda: self.recover_body_scale([self.jupiter, self.saturn]), lambda: self.recover_body_scale([self.uranus, self.neptune]), lambda: self.recover_sky(), # lambda: self.recover_run(), self.set_bodies_as_real_scale_animation ] def enabled_orbit_line(self, orbit_line): from ursina import Vec4 orbit_line.alpha = 0 orbit_line.color *= Vec4(1, 1, 1, 0) # orbit_line.origin_color = orbit_line.color def orbit_line_update(): alpha = orbit_line.alpha alpha += 0.01 print(alpha) if alpha > orbit_line.origin_alpha: alpha = orbit_line.origin_alpha orbit_line.update = lambda: None orbit_line.alpha = alpha orbit_line.color = Vec4(orbit_line.color[0], orbit_line.color[1], orbit_line.color[2], alpha) print(orbit_line, orbit_line.alpha) orbit_line.update = orbit_line_update orbit_line.enabled = True def enabled_orbit_lines(self): for orbit_line in self.orbit_lines: # orbit_line.origin_alpha = orbit_line.alpha # orbit_line.alpha = 0 self.enabled_orbit_line(orbit_line) def scale_animation(self, body): size_scale, scale_x = self.body_scale_dict[body] scale_inc = (scale_x - body.planet.scale_x) / 200.0 def update_scale(): # body.planet.origin_update() planet_scale_x = body.planet.scale_x planet_scale_x += scale_inc if planet_scale_x > scale_x: planet_scale_x = scale_x body.planet.update = body.planet.origin_update body.planet.scale = planet_scale_x body.planet.update = update_scale def recover_run(self): pass # for body in self.bodies: # body.planet.update = body.planet.origin_update def recover_sky(self): def update_sky(): alpha = self.sky.alpha alpha += 0.01 if alpha > 1.0: alpha = 1.0 self.sky.update = lambda: None self.sky.alpha = alpha self.sky.update = update_sky def recover_body_scale(self, body_or_bodies): if not isinstance(body_or_bodies, list): bodies = [body_or_bodies] else: bodies = body_or_bodies for body in bodies: self.scale_animation(body) from ursina import invoke def recover_run_speed(): UrsinaConfig.run_speed_factor = 1 invoke(function=recover_run_speed, delay=3.0) def set_body_as_real_scale(self, body): UrsinaConfig.run_speed_factor = 0.01 body.planet.origin_update = body.planet.update # body.planet.update = lambda: None def update_scale(): size_scale, scale_x = self.body_scale_dict[body] body.planet.scale = scale_x / size_scale ext_fun_for_method(body.planet, after_run_fun=update_scale) def set_body_as_real_scale_animation(self, body): UrsinaConfig.run_speed_factor = 0.01 body.planet.origin_update = body.planet.update size_scale, scale_x = self.body_scale_dict[body] scale_inc = (scale_x - scale_x / size_scale) / 200.0 # scale_inc = (scale_x / size_scale) / 10.0 def update_scale(): planet_scale_x = body.planet.scale_x planet_scale_x -= scale_inc if planet_scale_x <= scale_x / size_scale: planet_scale_x = scale_x / size_scale body.planet.update = lambda: None # body.planet.origin_update body.planet.scale = planet_scale_x # scale_x / size_scale body.planet.update = update_scale # ext_fun_for_method(body.planet, after_run_fun=update_scale) def set_bodies_as_real_scale(self): self.save_body_scale() for body in self.bodies: self.set_body_as_real_scale(body) for orbit_line in self.orbit_lines: orbit_line.origin_alpha = orbit_line.alpha # orbit_line.alpha = 0 orbit_line.enabled = False self.sky.alpha = 0 def set_bodies_as_real_scale_animation(self): # self.save_body_scale() for body in self.bodies: self.set_body_as_real_scale_animation(body) # for orbit_line in self.orbit_lines: # orbit_line.origin_alpha = orbit_line.alpha # # orbit_line.alpha = 0 # orbit_line.enabled = False self.sky.alpha = 0 def save_body_scale(self): self.body_scale_dict = {} for body in self.bodies: self.body_scale_dict[body] = (body.size_scale, body.planet.scale_x) print(self.body_scale_dict) def input(self, key): # print(key) if key == "enter up": if self.step_index < len(self.steps): fun = self.steps[self.step_index] fun() self.step_index += 1 if __name__ == '__main__': # 以下展示的效果为太阳系真实的时间和位置 sim = SolarSystemRealitySim() def input(key): sim.input(key) sim.run( # debug_mode=True, # 是否调试模式 dt=SECONDS_PER_DAY, # 1秒=1天 # dt=SECONDS_PER_HOUR, # 1秒=1小时 start_time='1985-02-28 00:00:00', # start_time='2025-01-01 00:00:00', # start_time='2050-01-01 12:00:00', # 指定运行的开始时间,不指定为当前时间 # 网上没有找到精确的日期,宇宙模拟器展示大概2040年8、9月份 # start_time='2040-08-15 12:00:00', # 金木水火土五星连珠的时间 # https://baijiahao.baidu.com/s?id=1776120995339598449 # start_time='2049-01-01 12:00:00', # 九星连珠的时间 # https://988892.com/qiwenyishi/2023061960711.html # start_time='2149-12-10 12:00:00', # 九星连珠的时间 # https://baijiahao.baidu.com/s?id=1654160345900112362 show_earth_clouds=True, # 地球是否显示云层(图片效果,不是真实的云层) # recalc_moon_pos=False, # 为了更好的展示效果,需要对月球的位置重新计算(使得地月距离放大,月球相对地球方向不变) clock_position_center=True # 时钟是否显示在中间 )