Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Python_超人
宇宙模拟器
提交
996e4875
宇宙模拟器
项目概览
Python_超人
/
宇宙模拟器
通知
19
Star
2
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
DevOps
流水线
流水线任务
计划
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
宇宙模拟器
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
DevOps
DevOps
流水线
流水线任务
计划
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
流水线任务
提交
Issue看板
提交
996e4875
编写于
4月 23, 2023
作者:
三月三net
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Python超人-宇宙模拟器
上级
0433750b
变更
5
显示空白变更内容
内联
并排
Showing
5 changed file
with
255 addition
and
73 deletion
+255
-73
docs/拉格朗日点计算公式.md
docs/拉格朗日点计算公式.md
+40
-0
objs/obj.py
objs/obj.py
+4
-2
objs/satellite.py
objs/satellite.py
+2
-1
sim_lab/lagrangian_points.py
sim_lab/lagrangian_points.py
+199
-68
simulators/ursina/entities/entity_utils.py
simulators/ursina/entities/entity_utils.py
+10
-2
未找到文件。
docs/拉格朗日点计算公式.md
0 → 100644
浏览文件 @
996e4875
### 拉格朗日点公式
$$
a =
\f
rac{m2}{m1+m2}
$$
```
a = m2 / (m1 + m2)
```
$$
L1 = (R ⋅ (1 -
\s
qrt[3]{
\f
rac{a}{3}} ) , 0)
$$
```
l1 = (r * (1 - pow(a / 3, 1 / 3)), 0)
```
$$
L2 = (R ⋅ (1 +
\s
qrt[3]{
\f
rac{a}{3}} ) , 0)
$$
```
l2 = (r * (1 + pow(a / 3, 1 / 3)), 0)
```
$$
L3 = (-R ⋅ (1 + {
\f
rac{5 ⋅ a}{12}} ) , 0)
$$
```
l3 = (-r * (1 + (5 * a) / 12), 0)
```
$$
L4 = (
\f
rac{R}{2} ⋅ {
\f
rac{m1-m2}{m1+m2}} ,
\f
rac{
\s
qrt{3}}{2} ⋅R)
$$
```
l4 = ((r / 2) * ((m1 - m2) / (m1 + m2)), pow(3, 1 / 2) / 2 * r)
```
$$
L5 = (
\f
rac{R}{2} ⋅ {
\f
rac{m1-m2}{m1+m2}} , -
\f
rac{
\s
qrt{3}}{2} ⋅R)
$$
```
l5 = ((r / 2) * ((m1 - m2) / (m1 + m2)), -pow(3, 1 / 2) / 2 * r)
```
\ No newline at end of file
objs/obj.py
浏览文件 @
996e4875
...
...
@@ -23,7 +23,7 @@ class Obj(metaclass=ABCMeta):
def
__init__
(
self
,
name
,
mass
,
init_position
,
init_velocity
,
density
=
5e3
,
color
=
(
125
/
255
,
125
/
255
,
125
/
255
),
texture
=
None
,
size_scale
=
1.0
,
distance_scale
=
1.0
,
parent
=
None
,
ignore_mass
=
False
,
parent
=
None
,
ignore_mass
=
False
,
trail_scale_factor
=
1.0
,
trail_color
=
None
,
show_name
=
False
,
rotation
=
None
,
gravity_only_for
=
[],
model
=
None
):
...
...
@@ -95,6 +95,7 @@ class Obj(metaclass=ABCMeta):
self
.
light_disable
=
False
self
.
__has_rings
=
False
self
.
trail_scale_factor
=
trail_scale_factor
def
find_model
(
self
,
model
:
str
):
if
not
model
.
endswith
(
".obj"
):
...
...
@@ -317,7 +318,8 @@ class Obj(metaclass=ABCMeta):
def
__repr__
(
self
):
return
'<%s(%s):%s(%s)> m=%.3e(kg), d=%.3e(kg/m³), p=[%.3e,%.3e,%.3e](km), v=%s(km/s), s=%.3e'
%
\
(
self
.
name
,
self
.
__class__
.
__name__
,
os
.
path
.
basename
(
self
.
model
),
os
.
path
.
basename
(
self
.
texture
),
self
.
mass
,
self
.
density
,
(
self
.
name
,
self
.
__class__
.
__name__
,
os
.
path
.
basename
(
self
.
model
),
os
.
path
.
basename
(
self
.
texture
),
self
.
mass
,
self
.
density
,
self
.
position
[
0
],
self
.
position
[
1
],
self
.
position
[
2
],
self
.
velocity
,
self
.
size_scale
)
def
ignore_gravity_with
(
self
,
body
):
...
...
objs/satellite.py
浏览文件 @
996e4875
...
...
@@ -20,7 +20,7 @@ class Satellite(Obj):
texture
=
"satellite.png"
,
size_scale
=
1.0
,
distance_scale
=
1.0
,
ignore_mass
=
False
,
density
=
1e3
,
color
=
(
7
,
0
,
162
),
trail_color
=
(
255
,
255
,
255
),
show_name
=
False
,
model
=
"satellite.obj"
,
trail_scale_factor
=
5.0
,
model
=
"satellite.obj"
,
parent
=
None
,
gravity_only_for
=
[]):
params
=
{
"name"
:
name
,
...
...
@@ -34,6 +34,7 @@ class Satellite(Obj):
"distance_scale"
:
distance_scale
,
"ignore_mass"
:
ignore_mass
,
"trail_color"
:
trail_color
,
"trail_scale_factor"
:
trail_scale_factor
,
"show_name"
:
show_name
,
"parent"
:
parent
,
"gravity_only_for"
:
gravity_only_for
,
...
...
sim_lab/lagrangian_points.py
浏览文件 @
996e4875
# https://www.163.com/dy/article/G5F1016F053102ZV.html
# https://www.sciencedirect.com/topics/physics-and-astronomy/lagrangian-points
# 以下是太阳和地球的第一、二、三个拉格朗日点的真实坐标和速度数据:
"""
https://www.163.com/dy/article/G5F1016F053102ZV.html
https://www.sciencedirect.com/topics/physics-and-astronomy/lagrangian-points
以下是太阳和地球的第一、二、三个拉格朗日点的真实坐标和速度数据:
L1点: 坐标: x = 0.010205 AU, y = 0 AU, z = 0 AU 速度: vx = 0 m/s, vy = 246.593 m/s, vz = 0 m/s
L2点: 坐标: x = -0.010205 AU, y = 0 AU, z = 0 AU 速度: vx = 0 m/s, vy = -246.593 m/s, vz = 0 m/s
L3点: 坐标: x = 0.990445 AU, y = 0 AU, z = 0 AU 速度: vx = 0 m/s, vy = 11.168 m/s, vz = 0 m/s
L4点: 坐标: x = 0.500 AU, y = 0.866025 AU, z = 0 AU 速度: vx = -2446.292 m/s, vy = -1412.901 m/s, vz = 0 m/s
L5点: 坐标: x = 0.500 AU, y = -0.866025 AU, z = 0 AU 速度: vx = -2446.292 m/s, vy = 1412.901 m/s, vz = 0 m/s
https://baike.baidu.com/pic/%E6%8B%89%E6%A0%BC%E6%9C%97%E6%97%A5%E7%82%B9/731078/0/dbb44aed2e738bd4510fa07aa98b87d6277ff94b?fr=lemma&fromModule=lemma_content-image&ct=single#aid=0&pic=dbb44aed2e738bd4510fa07aa98b87d6277ff94b
"""
#
#
L1点: 坐标: x = 0.010205 AU, y = 0 AU, z = 0 AU 速度: vx = 0 m/s, vy = 246.593 m/s, vz = 0 m/s
#
AU = 1.496e8
#
# L2点: 坐标: x = -0.010205 AU, y = 0 AU, z = 0 AU 速度: vx = 0 m/s, vy = -246.593 m/s, vz = 0 m/s
#
# L3点: 坐标: x = 0.990445 AU, y = 0 AU, z = 0 AU 速度: vx = 0 m/s, vy = 11.168 m/s, vz = 0 m/s
# def compute_barycenter(masses, positions):
# """
# Compute the barycenter position of celestial objects in 3D space
# masses: a list of masses of celestial objects
# positions: a list of positions of celestial objects, each position is a tuple (x, y, z)
# """
# m_sum = sum(masses)
# x_sum = 0
# y_sum = 0
# z_sum = 0
# for i in range(len(masses)):
# x_sum += masses[i] * positions[i][0] / m_sum
# y_sum += masses[i] * positions[i][1] / m_sum
# z_sum += masses[i] * positions[i][2] / m_sum
# return (x_sum, y_sum, z_sum)
#
# L4点: 坐标: x = 0.500 AU, y = 0.866025 AU, z = 0 AU 速度: vx = -2446.292 m/s, vy = -1412.901 m/s, vz = 0 m/s
#
# L5点: 坐标: x = 0.500 AU, y = -0.866025 AU, z = 0 AU 速度: vx = -2446.292 m/s, vy = 1412.901 m/s, vz = 0 m/s
# def get_lagrangian_points(m1, m2, r):
# """
# https://baike.baidu.com/item/%E6%8B%89%E6%A0%BC%E6%9C%97%E6%97%A5%E7%82%B9/731078
#
# 其中,AU表示“天文单位”,即地球与太阳之间的平均距离,约为1.496 x 10^8公里。速度以m/s为单位。
# 这些数据是基于2021年3月的真实数据,并经过了卫星组织、NASA和欧洲航天局等机构的验证。
# AU = 1.496e8
AU
=
1
import
matplotlib.pyplot
as
plt
points
=
[(
0.010205
*
AU
,
0
),
(
-
0.010205
*
AU
,
0
),
# (0.990445 * AU, 0),
(
0.500
*
AU
,
0.866025
*
AU
),
(
0.500
*
AU
,
-
0.866025
*
AU
)]
# plt.plot(AU, 0, "r.")
plt
.
plot
(
0
,
0
,
"b."
)
for
x
,
y
in
points
:
plt
.
plot
(
x
,
y
,
"g."
)
# x = [1, 2, 3, 4]
# y = [2, 4, 2, 6]
# y1 = [e + 1 for e in y]
# y2 = [e + 2 for e in y]
# plt.plot(x, y, "b.") # b:蓝色,.:点
# plt.plot(x, y1, "ro") # r:红色,o:圆圈
# plt.plot(x, y2, "kx") # k:黑色,x:x字符(小叉)
plt
.
show
()
# 在窗口显示该图片
# @param m1: 大质量
# @param m2: 小质量
# @param r: 半径
# @return:
# """
# a = m2 / (m1 + m2)
# l1 = (r * (1 - pow(a / 3, 1 / 3)), 0)
# l2 = (r * (1 + pow(a / 3, 1 / 3)), 0)
# l3 = (-r * (1 + (5 * a) / 12), 0)
# l4 = ((r / 2) * ((m1 - m2) / (m1 + m2)), pow(3, 1 / 2) / 2 * r)
# l5 = ((r / 2) * ((m1 - m2) / (m1 + m2)), -pow(3, 1 / 2) / 2 * r)
#
# # print(l1[0]/AU, l2[0]/AU, l3[0]/AU, l4[0]/AU, l5[0]/AU)
# return l1, l2, l3, l4, l5
#
#
# def show_figure(points, p1_name, p2_name, unit, barycenter=None):
# import matplotlib.pyplot as plt
#
# # Data from NASA
# L1 = [1.5e6, 0]
# L2 = [-1.5e6, 0]
# L3 = [-1.5e6, 0]
# L4 = [0.5e6, 0.87e6]
# L5 = [0.5e6, -0.87e6]
# sun = [0, 0]
# earth = [0, -1.5e8]
# plt.figure(figsize=(16, 12))
# plt.plot(0, 0, "ro", markersize=20, label=p1_name)
# plt.text(-unit / 20, -unit / 10, p1_name, fontsize=30, color="r")
# plt.plot(unit, 0, "b.", markersize=4, label=p2_name)
# plt.text(unit - unit / 20, -unit / 20, p2_name, fontsize=20, color="b")
# idx = 1
#
# for x, y in points:
# plt.plot(x, y, "gx", markersize=3, label=f"L{idx}")
# if idx == 1:
# x_offset = -unit / 22
# else:
# x_offset = unit / 300
# plt.text(x + x_offset, y + unit / 300, f"L{idx}", fontsize=18, color="g")
# idx += 1
#
# # Create plot and set axis limits
# fig, ax = plt.subplots()
# # ax.set_xlim(-2.5e8, 2.5e8)
# # ax.set_ylim(-2.5e8, 2.5e8)
# if barycenter is not None:
# plt.plot(barycenter[0], barycenter[1], "gx", markersize=10, label=f"L{idx}")
#
# # Plot positions of Lagrange points, Sun and Earth
# ax.plot(sun[0], sun[1], 'o', markersize=10, color='yellow')
# # ax.plot(earth[0], earth[1], 'o', markersize=5, color='blue')
# ax.plot(L1[0], L1[1], 'x', markersize=10, color='red')
# ax.plot(L2[0], L2[1], 'x', markersize=10, color='green')
# ax.plot(L3[0], L3[1], 'x', markersize=10, color='purple')
# ax.plot(L4[0], L4[1], '+', markersize=10, color='red')
# ax.plot(L5[0], L5[1], '+', markersize=10, color='green')
# # plt.plot(x, y, "b.") # b:蓝色,.:点
# # plt.plot(x, y1, "ro") # r:红色,o:圆圈
# # plt.plot(x, y2, "kx") # k:黑色,x:x字符(小叉)
# plt.show() # 在窗口显示该图片
#
# # Plot labels for Lagrange points, Sun and Earth
# # ax.annotate('Sun', (sun[0]+2e7, sun[1]+2e7))
# # ax.annotate('Earth', (earth[0]+2e7, earth[1]+2e7))
# ax.annotate('L1', (L1[0]+2e7, L1[1]+2e7))
# ax.annotate('L2', (L2[0]+2e7, L2[1]+2e7))
# ax.annotate('L3', (L3[0]+2e7, L3[1]+2e7))
# ax.annotate('L4', (L4[0]+2e7, L4[1]+2e7))
# ax.annotate('L5', (L5[0]+2e7, L5[1]+2e7))
#
# # Set title and show plot
# plt.title('Positions of Lagrange Points L1 to L5, Sun and Earth')
# plt.show()
\ No newline at end of file
# barycenter = compute_barycenter([5.97237e24, 7.342e22], [[0, 0, 0], [363104, 0, 0]])
# print(barycenter)
# # show_figure(get_lagrangian_points(1.9891e30, 5.97237e24, AU), "Sun", "Earth", AU)
# show_figure(get_lagrangian_points(5.97237e24, 7.342e22, 363104), "Earth", "Moon", 363104, barycenter)
# **************************************************************************************************************
# **************************************************************************************************************
# -*- coding:utf-8 -*-
# title :地月场景模拟
# description :地月场景模拟
# author :Python超人
# date :2023-02-11
# link :https://gitcode.net/pythoncr/
# python_version :3.8
# ==============================================================================
from
bodies
import
Sun
,
Earth
,
Moon
from
objs
import
Satellite
,
Satellite2
from
common.consts
import
SECONDS_PER_HOUR
,
SECONDS_PER_HALF_DAY
,
SECONDS_PER_DAY
,
SECONDS_PER_WEEK
,
SECONDS_PER_MONTH
from
sim_scenes.func
import
ursina_run
,
camera_look_at
from
bodies.body
import
AU
from
simulators.ursina.entities.body_timer
import
TimeData
from
simulators.ursina.entities.entity_utils
import
create_directional_light
from
simulators.ursina.ursina_event
import
UrsinaEvent
from
simulators.ursina.ursina_mesh
import
create_line
def
compute_barycenter
(
masses
,
positions
):
"""
Compute the barycenter position of celestial objects in 3D space
masses: a list of masses of celestial objects
positions: a list of positions of celestial objects, each position is a tuple (x, y, z)
"""
m_sum
=
sum
(
masses
)
x_sum
=
0
y_sum
=
0
z_sum
=
0
for
i
in
range
(
len
(
masses
)):
x_sum
+=
masses
[
i
]
*
positions
[
i
][
0
]
/
m_sum
y_sum
+=
masses
[
i
]
*
positions
[
i
][
1
]
/
m_sum
z_sum
+=
masses
[
i
]
*
positions
[
i
][
2
]
/
m_sum
return
(
x_sum
,
y_sum
,
z_sum
)
def
get_lagrangian_points
(
m1
,
m2
,
r
):
"""
https://baike.baidu.com/item/%E6%8B%89%E6%A0%BC%E6%9C%97%E6%97%A5%E7%82%B9/731078
@param m1: 大质量
@param m2: 小质量
@param r: 半径
@return:
"""
a
=
m2
/
(
m1
+
m2
)
l1
=
(
0
,
0
,
r
*
(
1
-
pow
(
a
/
3
,
1
/
3
)))
l2
=
(
0
,
0
,
r
*
(
1
+
pow
(
a
/
3
,
1
/
3
)))
l3
=
(
0
,
0
,
-
r
*
(
1
+
(
5
*
a
)
/
12
))
l4
=
(
pow
(
3
,
1
/
2
)
/
2
*
r
,
0
,
(
r
/
2
)
*
((
m1
-
m2
)
/
(
m1
+
m2
)))
l5
=
(
-
pow
(
3
,
1
/
2
)
/
2
*
r
,
0
,
(
r
/
2
)
*
((
m1
-
m2
)
/
(
m1
+
m2
)))
return
l1
,
l2
,
l3
,
l4
,
l5
if
__name__
==
'__main__'
:
"""
地球、月球
"""
OFFSETTING
=
0
# TODO: 可以抵消月球带动地球的力,保持地球在原地
# OFFSETTING = 0.01265
bodies
=
[
Earth
(
init_position
=
[
0
,
0
,
0
],
texture
=
"earth_hd.jpg"
,
init_velocity
=
[
OFFSETTING
,
0
,
0
],
size_scale
=
0.5e1
),
# 地球放大 5 倍,距离保持不变
Moon
(
init_position
=
[
0
,
0
,
363104
],
# 距地距离约: 363104 至 405696 km
init_velocity
=
[
-
1.03
,
0
,
0
],
size_scale
=
1e1
)
# 月球放大 10 倍,距离保持不变
]
earth
=
bodies
[
0
]
moon
=
bodies
[
1
]
points
=
get_lagrangian_points
(
earth
.
mass
,
moon
.
mass
,
363104
)
offset_points
=
[
[
0
,
0
,
21590
],
# 调整加速度为0
[
0
,
0
,
0
],
[
0
,
0
,
0
],
[
0
,
0
,
0
],
[
0
,
0
,
0
],
]
velocities
=
[
[
-
0.7
,
-
0.1
,
0
],
# [-0.859, 0, 0],
[
-
1.265
,
0
,
0
],
[
1.03
,
0
,
0
],
[
0
,
0
,
0
],
[
0
,
0
,
0
],
]
for
i
,
point
in
enumerate
(
points
):
satellite
=
Satellite
(
name
=
f
'卫星
{
i
+
1
}
'
,
mass
=
1.4e10
,
size_scale
=
1e3
,
color
=
(
255
,
200
,
0
),
init_position
=
[
point
[
0
]
+
offset_points
[
i
][
0
],
point
[
1
]
+
offset_points
[
i
][
1
],
point
[
2
]
+
offset_points
[
i
][
2
]],
init_velocity
=
velocities
[
i
])
bodies
.
append
(
satellite
)
def
on_ready
():
# 运行前触发
# 运行开始前,将摄像机指向地球
# 摄像机看向地球
camera_look_at
(
moon
)
def
on_timer_changed
(
time_data
:
TimeData
):
from
ursina
import
destroy
if
hasattr
(
earth
,
"line"
):
destroy
(
earth
.
line
)
earth
.
line
=
create_line
(
from_pos
=
earth
.
planet
.
position
,
to_pos
=
moon
.
planet
.
main_entity
.
position
)
# 订阅事件后,上面的函数功能才会起作用
# 运行前会触发 on_ready
UrsinaEvent
.
on_ready_subscription
(
on_ready
)
# 运行中,每时每刻都会触发 on_timer_changed
UrsinaEvent
.
on_timer_changed_subscription
(
on_timer_changed
)
# 使用 ursina 查看的运行效果
# 常用快捷键: P:运行和暂停 O:重新开始 I:显示天体轨迹
# position = 左-右+、上+下-、前+后-
ursina_run
(
bodies
,
SECONDS_PER_HOUR
,
position
=
(
-
300000
,
1500000
,
-
100
),
show_timer
=
True
,
show_trail
=
True
)
simulators/ursina/entities/entity_utils.py
浏览文件 @
996e4875
...
...
@@ -57,6 +57,14 @@ def trail_init(parent, scale):
trail_color
=
conv_to_vec4_color
(
parent
.
body_view
.
body
.
trail_color
)
trail_color
=
adjust_brightness
(
trail_color
,
0.4
)
parent
.
trail_color
=
color
.
rgba
(
trail_color
[
0
],
trail_color
[
1
],
trail_color
[
2
],
0.6
)
if
hasattr
(
parent
.
body
,
"trail_scale_factor"
):
if
parent
.
body
.
trail_scale_factor
is
not
None
:
parent
.
trail_scale
=
parent
.
body
.
trail_scale_factor
*
scale
else
:
# 拖尾球体的大小为该天体的 1/5
parent
.
trail_scale
=
scale
/
5
else
:
# 拖尾球体的大小为该天体的 1/5
parent
.
trail_scale
=
scale
/
5
if
parent
.
trail_scale
<
1
:
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录