import os import numpy as np import time import sys import paddle import paddle.fluid as fluid import models import argparse import functools from losses import tripletloss from losses import quadrupletloss from losses import emlloss from losses.metrics import recall_topk from utility import add_arguments, print_arguments import math # yapf: disable parser = argparse.ArgumentParser(description=__doc__) add_arg = functools.partial(add_arguments, argparser=parser) add_arg('batch_size', int, 120, "Minibatch size.") add_arg('use_gpu', bool, True, "Whether to use GPU or not.") add_arg('image_shape', str, "3,224,224", "Input image size.") add_arg('with_mem_opt', bool, False, "Whether to use memory optimization or not.") add_arg('pretrained_model', str, None, "Whether to use pretrained model.") add_arg('model', str, "SE_ResNeXt50_32x4d", "Set the network to use.") add_arg('loss_name', str, "emlloss", "Loss name.") # yapf: enable model_list = [m for m in dir(models) if "__" not in m] def eval(args): # parameters from arguments model_name = args.model pretrained_model = args.pretrained_model with_memory_optimization = args.with_mem_opt loss_name = args.loss_name image_shape = [int(m) for m in args.image_shape.split(",")] assert model_name in model_list, "{} is not in lists: {}".format(args.model, model_list) image = fluid.layers.data(name='image', shape=image_shape, dtype='float32') label = fluid.layers.data(name='label', shape=[1], dtype='int64') # model definition model = models.__dict__[model_name]() out = model.net(input=image, class_dim=200) if loss_name == "tripletloss": metricloss = tripletloss() cost = metricloss.loss(out[0]) elif loss_name == "quadrupletloss": metricloss = quadrupletloss() cost = metricloss.loss(out[0]) elif loss_name == "emlloss": metricloss = emlloss() cost = metricloss.loss(out[0]) avg_cost = fluid.layers.mean(x=cost) test_program = fluid.default_main_program().clone(for_test=True) if with_memory_optimization: fluid.memory_optimize(fluid.default_main_program()) place = fluid.CUDAPlace(0) if args.use_gpu else fluid.CPUPlace() exe = fluid.Executor(place) exe.run(fluid.default_startup_program()) if pretrained_model: def if_exist(var): return os.path.exists(os.path.join(pretrained_model, var.name)) fluid.io.load_vars(exe, pretrained_model, predicate=if_exist) test_reader = paddle.batch(metricloss.test_reader, batch_size=args.batch_size) feeder = fluid.DataFeeder(place=place, feed_list=[image, label]) fetch_list = [avg_cost.name, out[0].name] test_info = [[]] f = [] l = [] for batch_id, data in enumerate(test_reader()): if len(data) < args.batch_size: continue t1 = time.time() loss, feas = exe.run(test_program, fetch_list=fetch_list, feed=feeder.feed(data)) label = np.asarray([x[1] for x in data]) f.append(feas) l.append(label) t2 = time.time() period = t2 - t1 loss = np.mean(np.array(loss)) test_info[0].append(loss) if batch_id % 20 == 0: print("testbatch {0}, loss {1}, time {2}".format( \ batch_id, loss, "%2.2f sec" % period)) test_loss = np.array(test_info[0]).mean() f = np.vstack(f) l = np.hstack(l) recall = recall_topk(f, l, k=1) print("End test, test_loss {0}, test recall {1}".format( \ test_loss, recall)) sys.stdout.flush() def main(): args = parser.parse_args() print_arguments(args) eval(args) if __name__ == '__main__': main()