# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import shutil import sys import os def usage(): """ usage information """ print print("please use command: ") print( "python convert_static_to_dygraph.py input_params_dir output_params_dir") print def convert_static_to_dygraph(static_model_path, dygraph_model_path): """ convert paddle static bert model to dygraph model """ def mkdir(path): if not os.path.isdir(path): if os.path.split(path)[0]: mkdir(os.path.split(path)[0]) else: return os.mkdir(path) if os.path.exists(dygraph_model_path): shutil.rmtree(dygraph_model_path) mkdir(dygraph_model_path) if not os.path.exists(static_model_path): print("paddle static model path doesn't exist.....") return -1 file_list = [] for root, dirs, files in os.walk(static_model_path): file_list.extend(files) os.makedirs(os.path.join(dygraph_model_path, "PretrainModelLayer_0")) os.makedirs( os.path.join(dygraph_model_path, "PretrainModelLayer_0/BertModelLayer_0")) os.makedirs( os.path.join(dygraph_model_path, "PretrainModelLayer_0/PrePostProcessLayer_0")) os.makedirs( os.path.join( dygraph_model_path, "PretrainModelLayer_0/BertModelLayer_0/PrePostProcessLayer_0")) #os.chdir(static_model_path) #convert embedding file embedding_type = ["word", "pos", "sent"] for i in range(3): src_name = embedding_type[i] + "_embedding" trg_name = "Embedding_" + str(i) + "." + src_name shutil.copyfile( os.path.join(static_model_path, src_name), os.path.join(dygraph_model_path, "PretrainModelLayer_0/BertModelLayer_0/" + trg_name)) #convert pre_encoder file shutil.copyfile( os.path.join(static_model_path, "pre_encoder_layer_norm_scale"), os.path.join( dygraph_model_path, "PretrainModelLayer_0/BertModelLayer_0/PrePostProcessLayer_0/LayerNorm_0._layer_norm_scale" )) shutil.copyfile( os.path.join(static_model_path, "pre_encoder_layer_norm_bias"), os.path.join( dygraph_model_path, "PretrainModelLayer_0/BertModelLayer_0/PrePostProcessLayer_0/LayerNorm_0._layer_norm_bias" )) #convert mask lm params file shutil.copyfile( os.path.join(static_model_path, "mask_lm_out_fc.b_0"), os.path.join(dygraph_model_path, "PretrainModelLayer_0/Layer_0.mask_lm_out_fc.b_0")) shutil.copyfile( os.path.join(static_model_path, "mask_lm_trans_fc.b_0"), os.path.join(dygraph_model_path, "PretrainModelLayer_0/FC_0.mask_lm_trans_fc.b_0")) shutil.copyfile( os.path.join(static_model_path, "mask_lm_trans_fc.w_0"), os.path.join(dygraph_model_path, "PretrainModelLayer_0/FC_0.mask_lm_trans_fc.w_0")) shutil.copyfile( os.path.join(static_model_path, "mask_lm_trans_layer_norm_bias"), os.path.join( dygraph_model_path, "PretrainModelLayer_0/PrePostProcessLayer_0/LayerNorm_0._layer_norm_bias" )) shutil.copyfile( os.path.join(static_model_path, "mask_lm_trans_layer_norm_scale"), os.path.join( dygraph_model_path, "PretrainModelLayer_0/PrePostProcessLayer_0/LayerNorm_0._layer_norm_scale" )) shutil.copyfile( os.path.join(static_model_path, "next_sent_fc.b_0"), os.path.join(dygraph_model_path, "PretrainModelLayer_0/FC_1.next_sent_fc.b_0")) shutil.copyfile( os.path.join(static_model_path, "next_sent_fc.w_0"), os.path.join(dygraph_model_path, "PretrainModelLayer_0/FC_1.next_sent_fc.w_0")) shutil.copyfile( os.path.join(static_model_path, "pooled_fc.b_0"), os.path.join( dygraph_model_path, "PretrainModelLayer_0/BertModelLayer_0/FC_0.pooled_fc.b_0")) shutil.copyfile( os.path.join(static_model_path, "pooled_fc.w_0"), os.path.join( dygraph_model_path, "PretrainModelLayer_0/BertModelLayer_0/FC_0.pooled_fc.w_0")) encoder_num = 0 for f in file_list: if not f.startswith("encoder_layer"): continue layer_num = f.split('_')[2] if int(layer_num) > encoder_num: encoder_num = int(layer_num) encoder_num += 1 for i in range(encoder_num): encoder_dir = "EncoderSubLayer_" + str(i) os.makedirs( os.path.join(dygraph_model_path, "PretrainModelLayer_0/BertModelLayer_0/" + "EncoderLayer_0/", encoder_dir)) os.makedirs( os.path.join(dygraph_model_path, "PretrainModelLayer_0/BertModelLayer_0/" + "EncoderLayer_0/", encoder_dir + "/PositionwiseFeedForwardLayer_0")) os.makedirs( os.path.join( dygraph_model_path, "PretrainModelLayer_0/BertModelLayer_0/" + "EncoderLayer_0/", encoder_dir + "/MultiHeadAttentionLayer_0")) os.makedirs( os.path.join( dygraph_model_path, "PretrainModelLayer_0/BertModelLayer_0/" + "EncoderLayer_0/", encoder_dir + "/PrePostProcessLayer_1")) os.makedirs( os.path.join( dygraph_model_path, "PretrainModelLayer_0/BertModelLayer_0/" + "EncoderLayer_0/", encoder_dir + "/PrePostProcessLayer_3")) encoder_map_dict = { "ffn_fc_0.b_0": ("PositionwiseFeedForwardLayer_0", "FC_0.ffn_fc_0.b_0"), "ffn_fc_0.w_0": ("PositionwiseFeedForwardLayer_0", "FC_0.ffn_fc_0.w_0"), "ffn_fc_1.b_0": ("PositionwiseFeedForwardLayer_0", "FC_1.ffn_fc_1.b_0"), "ffn_fc_1.w_0": ("PositionwiseFeedForwardLayer_0", "FC_1.ffn_fc_1.w_0"), "multi_head_att_key_fc.b_0": ("MultiHeadAttentionLayer_0", "FC_1.key_fc.b_0"), "multi_head_att_key_fc.w_0": ("MultiHeadAttentionLayer_0", "FC_1.key_fc.w_0"), "multi_head_att_output_fc.b_0": ("MultiHeadAttentionLayer_0", "FC_3.output_fc.b_0"), "multi_head_att_output_fc.w_0": ("MultiHeadAttentionLayer_0", "FC_3.output_fc.w_0"), "multi_head_att_query_fc.b_0": ("MultiHeadAttentionLayer_0", "FC_0.query_fc.b_0"), "multi_head_att_query_fc.w_0": ("MultiHeadAttentionLayer_0", "FC_0.query_fc.w_0"), "multi_head_att_value_fc.b_0": ("MultiHeadAttentionLayer_0", "FC_2.value_fc.b_0"), "multi_head_att_value_fc.w_0": ("MultiHeadAttentionLayer_0", "FC_2.value_fc.w_0"), "post_att_layer_norm_bias": ("PrePostProcessLayer_1", "LayerNorm_0.post_att_layer_norm_bias"), "post_att_layer_norm_scale": ("PrePostProcessLayer_1", "LayerNorm_0.post_att_layer_norm_scale"), "post_ffn_layer_norm_bias": ("PrePostProcessLayer_3", "LayerNorm_0.post_ffn_layer_norm_bias"), "post_ffn_layer_norm_scale": ("PrePostProcessLayer_3", "LayerNorm_0.post_ffn_layer_norm_scale") } for f in file_list: if not f.startswith("encoder_layer"): continue layer_num = f.split('_')[2] suffix_name = "_".join(f.split('_')[3:]) in_dir = encoder_map_dict[suffix_name][0] rename = encoder_map_dict[suffix_name][1] encoder_layer = "EncoderSubLayer_" + layer_num shutil.copyfile( os.path.join(static_model_path, f), os.path.join(dygraph_model_path, "PretrainModelLayer_0/BertModelLayer_0/EncoderLayer_0/" + encoder_layer + "/" + in_dir + "/" + rename)) if __name__ == "__main__": if len(sys.argv) < 3: usage() exit(1) static_model_path = sys.argv[1] dygraph_model_path = sys.argv[2] convert_static_to_dygraph(static_model_path, dygraph_model_path)