# -*- encoding:utf-8 -*- # Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ SimNet utilities. """ import argparse import time import sys import re import os import six import numpy as np import logging import logging.handlers import paddle.fluid as fluid import io import pickle import warnings from functools import partial """ ******functions for file processing****** """ def load_vocab(file_path): """ load the given vocabulary """ vocab = {} f = io.open(file_path, "r", encoding="utf8") for line in f: items = line.strip("\n").split("\t") if items[0] not in vocab: vocab[items[0]] = int(items[1]) vocab[""] = 0 return vocab def get_result_file(args): """ Get Result File Args: conf_dict: Input path config samples_file_path: Data path of real training predictions_file_path: Prediction results path Returns: result_file: merge sample and predict result """ with io.open(args.test_data_dir, "r", encoding="utf8") as test_file: with io.open("predictions.txt", "r", encoding="utf8") as predictions_file: with io.open(args.test_result_path, "w", encoding="utf8") as test_result_file: test_datas = [line.strip("\n") for line in test_file] predictions = [line.strip("\n") for line in predictions_file] for test_data, prediction in zip(test_datas, predictions): test_result_file.write(test_data + "\t" + prediction + "\n") os.remove("predictions.txt") """ ******functions for string processing****** """ def pattern_match(pattern, line): """ Check whether a string is matched Args: pattern: mathing pattern line : input string Returns: True/False """ if re.match(pattern, line): return True else: return False """ ******functions for parameter processing****** """ def print_progress(task_name, percentage, style=0): """ Print progress bar Args: task_name: The name of the current task percentage: Current progress style: Progress bar form """ styles = ['#', '█'] mark = styles[style] * percentage mark += ' ' * (100 - percentage) status = '%d%%' % percentage if percentage < 100 else 'Finished' sys.stdout.write('%+20s [%s] %s\r' % (task_name, mark, status)) sys.stdout.flush() time.sleep(0.002) def display_args(name, args): """ Print parameter information Args: name: logger instance name args: Input parameter dictionary """ logger = logging.getLogger(name) logger.info("The arguments passed by command line is :") for k, v in sorted(v for v in vars(args).items()): logger.info("{}:\t{}".format(k, v)) def import_class(module_path, module_name, class_name): """ Load class dynamically Args: module_path: The current path of the module module_name: The module name class_name: The name of class in the import module Return: Return the attribute value of the class object """ if module_path: sys.path.append(module_path) module = __import__(module_name) return getattr(module, class_name) def str2bool(v): """ String to Boolean """ # because argparse does not support to parse "true, False" as python # boolean directly return v.lower() in ("true", "t", "1") class ArgumentGroup(object): """ Argument Class """ def __init__(self, parser, title, des): self._group = parser.add_argument_group(title=title, description=des) def add_arg(self, name, type, default, help, **kwargs): """ Add argument """ type = str2bool if type == bool else type self._group.add_argument( "--" + name, default=default, type=type, help=help + ' Default: %(default)s.', **kwargs) class ArgConfig(object): def __init__(self): parser = argparse.ArgumentParser() model_g = ArgumentGroup(parser, "model", "model configuration and paths.") model_g.add_arg("config_path", str, None, "Path to the json file for EmoTect model config.") model_g.add_arg("init_checkpoint", str, None, "Init checkpoint to resume training from.") model_g.add_arg("output_dir", str, None, "Directory path to save checkpoints") model_g.add_arg("task_mode", str, None, "task mode: pairwise or pointwise") train_g = ArgumentGroup(parser, "training", "training options.") train_g.add_arg("epoch", int, 10, "Number of epoches for training.") train_g.add_arg("save_steps", int, 200, "The steps interval to save checkpoints.") train_g.add_arg("validation_steps", int, 100, "The steps interval to evaluate model performance.") log_g = ArgumentGroup(parser, "logging", "logging related") log_g.add_arg("skip_steps", int, 10, "The steps interval to print loss.") log_g.add_arg("verbose_result", bool, True, "Whether to output verbose result.") log_g.add_arg("test_result_path", str, "test_result", "Directory path to test result.") log_g.add_arg("infer_result_path", str, "infer_result", "Directory path to infer result.") data_g = ArgumentGroup(parser, "data", "Data paths, vocab paths and data processing options") data_g.add_arg("train_data_dir", str, None, "Directory path to training data.") data_g.add_arg("valid_data_dir", str, None, "Directory path to valid data.") data_g.add_arg("test_data_dir", str, None, "Directory path to testing data.") data_g.add_arg("infer_data_dir", str, None, "Directory path to infer data.") data_g.add_arg("vocab_path", str, None, "Vocabulary path.") data_g.add_arg("batch_size", int, 32, "Total examples' number in batch for training.") data_g.add_arg("seq_len", int, 32, "The length of each sentence.") run_type_g = ArgumentGroup(parser, "run_type", "running type options.") run_type_g.add_arg("use_cuda", bool, False, "If set, use GPU for training.") run_type_g.add_arg("task_name", str, None, "The name of task to perform sentiment classification.") run_type_g.add_arg("do_train", bool, False, "Whether to perform training.") run_type_g.add_arg("do_valid", bool, False, "Whether to perform dev.") run_type_g.add_arg("do_test", bool, False, "Whether to perform testing.") run_type_g.add_arg("do_infer", bool, False, "Whether to perform inference.") run_type_g.add_arg("compute_accuracy", bool, False, "Whether to compute accuracy.") run_type_g.add_arg("lamda", float, 0.91, "When task_mode is pairwise, lamda is the threshold for calculating the accuracy.") custom_g = ArgumentGroup(parser, "customize", "customized options.") self.custom_g = custom_g parser.add_argument('--enable_ce',action='store_true',help='If set, run the task with continuous evaluation logs.') self.parser = parser def add_arg(self, name, dtype, default, descrip): self.custom_g.add_arg(name, dtype, default, descrip) def build_conf(self): return self.parser.parse_args() def print_arguments(args): """ Print Arguments """ print('----------- Configuration Arguments -----------') for arg, value in sorted(six.iteritems(vars(args))): print('%s: %s' % (arg, value)) print('------------------------------------------------') def init_log( log_path, level=logging.INFO, when="D", backup=7, format="%(levelname)s: %(asctime)s - %(filename)s:%(lineno)d * %(thread)d %(message)s", datefmt=None): """ init_log - initialize log module Args: log_path - Log file path prefix. Log data will go to two files: log_path.log and log_path.log.wf Any non-exist parent directories will be created automatically level - msg above the level will be displayed DEBUG < INFO < WARNING < ERROR < CRITICAL the default value is logging.INFO when - how to split the log file by time interval 'S' : Seconds 'M' : Minutes 'H' : Hours 'D' : Days 'W' : Week day default value: 'D' format - format of the log default format: %(levelname)s: %(asctime)s: %(filename)s:%(lineno)d * %(thread)d %(message)s INFO: 12-09 18:02:42: log.py:40 * 139814749787872 HELLO WORLD backup - how many backup file to keep default value: 7 Raises: OSError: fail to create log directories IOError: fail to open log file """ formatter = logging.Formatter(format, datefmt) logger = logging.getLogger() logger.setLevel(level) # console Handler consoleHandler = logging.StreamHandler() consoleHandler.setLevel(logging.DEBUG) logger.addHandler(consoleHandler) dir = os.path.dirname(log_path) if not os.path.isdir(dir): os.makedirs(dir) handler = logging.handlers.TimedRotatingFileHandler( log_path + ".log", when=when, backupCount=backup) handler.setLevel(level) handler.setFormatter(formatter) logger.addHandler(handler) handler = logging.handlers.TimedRotatingFileHandler( log_path + ".log.wf", when=when, backupCount=backup) handler.setLevel(logging.WARNING) handler.setFormatter(formatter) logger.addHandler(handler) def set_level(level): """ Reak-time set log level """ logger = logging.getLogger() logger.setLevel(level) logging.info('log level is set to : %d' % level) def get_level(): """ get Real-time log level """ logger = logging.getLogger() return logger.level def get_accuracy(preds, labels, mode, lamda=0.958): """ compute accuracy """ if mode == "pairwise": preds = np.array(list(map(lambda x: 1 if x[1] >= lamda else 0, preds))) else: preds = np.array(list(map(lambda x: np.argmax(x), preds))) labels = np.squeeze(labels) return np.mean(preds == labels) def get_softmax(preds): """ compute sotfmax """ _exp = np.exp(preds) return _exp / np.sum(_exp, axis=1, keepdims=True) def get_sigmoid(preds): """ compute sigmoid """ return 1 / (1 + np.exp(-preds)) def deal_preds_of_mmdnn(conf_dict, preds): """ deal preds of mmdnn """ if conf_dict['task_mode'] == 'pairwise': return get_sigmoid(preds) else: return get_softmax(preds) def init_checkpoint(exe, init_checkpoint_path, main_program): """ init checkpoint """ assert os.path.exists( init_checkpoint_path), "[%s] cann't be found." % init_checkpoint_path def existed_persitables(var): if not fluid.io.is_persistable(var): return False return os.path.exists(os.path.join(init_checkpoint_path, var.name)) fluid.io.load_vars( exe, init_checkpoint_path, main_program=main_program, predicate=existed_persitables) print("Load model from {}".format(init_checkpoint_path)) def load_dygraph(model_path, keep_name_table=False): """ To load python2 saved models in python3. """ try: para_dict, opti_dict = fluid.load_dygraph(model_path, keep_name_table) return para_dict, opti_dict except UnicodeDecodeError: warnings.warn( "An UnicodeDecodeError is catched, which might be caused by loading " "a python2 saved model. Encoding of pickle.load would be set and " "load again automatically.") if six.PY3: load_bak = pickle.load pickle.load = partial(load_bak, encoding="latin1") para_dict, opti_dict = fluid.load_dygraph(model_path, keep_name_table) pickle.load = load_bak return para_dict, opti_dict