# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. # #Licensed under the Apache License, Version 2.0 (the "License"); #you may not use this file except in compliance with the License. #You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # #Unless required by applicable law or agreed to in writing, software #distributed under the License is distributed on an "AS IS" BASIS, #WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. #See the License for the specific language governing permissions and #limitations under the License. from __future__ import print_function import sys import paddle.v2 as paddle import paddle.v2.fluid as fluid def ocr_conv(input, num, with_bn): assert (num % 4 == 0) def conv_block(input, filter_size, group_size, with_bn): return fluid.nets.img_conv_group( input=input, conv_num_filter=[num_filter] * groups, pool_size=2, pool_stride=2, conv_padding=1, conv_filter_size=3, conv_act='relu', conv_with_batchnorm=with_bn, pool_type='max') conv1 = conv_block(input, 16, (num / 4), with_bn) conv2 = conv_block(conv1, 32, (num / 4), with_bn) conv3 = conv_block(conv2, 64, (num / 4), with_bn) conv4 = conv_block(conv3, 128, (num / 4), with_bn) return conv4 num_classes = 9054 data_shape = [3, 32, 32] images = fluid.layers.data(name='pixel', shape=data_shape, dtype='float32') label = fluid.layers.data(name='label', shape=[1], dtype='int64') # encoder part conv_features = ocr_convs(imges, 8, True) sliced_feature = fluid.layers.im2sequence( input=conv_features, stride_x=1, stride_y=1, block_x=1, block_y=3, ) gru_forward = fluid.layers.gru(input=sliced_feature, size=200, act="relu") gru_backward = fluid.layers.gru(input=sliced_feature, size=200, reverse=True, act="relu") out = fluid.layers.fc(input=[gru_forward, gru_backward], size=num_classes + 1) cost = fluid.layers.warpctc( input=out, label=label, size=num_classes + 1, blank=num_classes, norm_by_times=True) optimizer = fluid.optimizer.Momentum( learning_rate=((1.0e-3) / 16), momentum=0.9) opts = optimizer.minimize(cost) decoded_out = fluid.layers.ctc_greedy_decoder(input=output, blank=class_num) error = fluid.evaluator.EditDistance(input=decoded_out, label=label) BATCH_SIZE = 16 PASS_NUM = 1 train_reader = paddle.batch( paddle.reader.shuffle( paddle.dataset.cifar.train10(), buf_size=128 * 10), batch_size=BATCH_SIZE) place = fluid.CPUPlace() exe = fluid.Executor(place) feeder = fluid.DataFeeder(place=place, feed_list=[images, label]) exe.run(fluid.default_startup_program()) for pass_id in range(PASS_NUM): accuracy.reset(exe) for data in train_reader(): loss, acc = exe.run(fluid.default_main_program(), feed=feeder.feed(data), fetch_list=[avg_cost] + accuracy.metrics) pass_acc = accuracy.eval(exe) print("loss:" + str(loss) + " acc:" + str(acc) + " pass_acc:" + str( pass_acc)) # this model is slow, so if we can train two mini batch, we think it works properly. exit(0) exit(1)