train_height: &train_height 128 train_width: &train_width 96 trainsize: &trainsize [*train_width, *train_height] ENV: run_mode: paddle device: GPU min_subgraph_size: 3 trt_calib_mode: False cpu_threads: 1 trt_use_static: False save_img: True save_res: True return_res: True MODEL: - KeypointOp: name: kpt param_path: paddlecv://models/tinypose_128x96/inference.pdiparams model_path: paddlecv://models/tinypose_128x96/inference.pdmodel batch_size: 2 image_shape: [3, *train_height, *train_width] PreProcess: - TopDownEvalAffine: trainsize: *trainsize - NormalizeImage: is_scale: true mean: [0.485, 0.456, 0.406] std: [0.229, 0.224, 0.225] - Permute: PostProcess: - HRNetPostProcess: use_dark: True Inputs: - input.image - KptOutput: name: vis Inputs: - input.fn - input.image - kpt.keypoints - kpt.kpt_scores