det_image_shape: &det_image_shape 320 kpt_image_height: &kpt_image_height 128 kpt_image_width: &kpt_image_width 96 kpt_image_shape: &kpt_image_shape [*kpt_image_width, *kpt_image_height] ENV: min_subgraph_size: 3 trt_calib_mode: False cpu_threads: 1 trt_use_static: False save_img: True save_res: True return_res: True MODEL: - DetectionOp: name: det param_path: paddlecv://models/picodet_s_320_lcnet_pedestrian/model.pdiparams model_path: paddlecv://models/picodet_s_320_lcnet_pedestrian/model.pdmodel batch_size: 1 image_shape: [3, *det_image_shape, *det_image_shape] PreProcess: - Resize: interp: 2 keep_ratio: false target_size: [*det_image_shape, *det_image_shape] - Permute: PostProcess: - ParserDetResults: label_list: paddlecv://dict/detection/coco_label_list.json threshold: 0.5 keep_cls_ids: [0] Inputs: - input.image - BboxExpandCropOp: name: crop Inputs: - input.image - det.dt_bboxes - KeypointOp: name: kpt param_path: paddlecv://models/tinypose_128x96/inference.pdiparams model_path: paddlecv://models/tinypose_128x96/inference.pdmodel batch_size: 2 image_shape: [3, *kpt_image_height, *kpt_image_width] PreProcess: - TopDownEvalAffine: trainsize: *kpt_image_shape - NormalizeImage: is_scale: true mean: [0.485, 0.456, 0.406] std: [0.229, 0.224, 0.225] - Permute: PostProcess: - HRNetPostProcess: use_dark: True Inputs: - crop.crop_image - crop.tl_point - KptOutput: name: vis Inputs: - input.fn - input.image - kpt.keypoints - kpt.kpt_scores