#!/usr/bin/env bash # download pretrain model root_url="http://paddle-imagenet-models-name.bj.bcebos.com" MobileNetV1="MobileNetV1_pretrained.zip" ResNet50="ResNet50_pretrained.zip" pretrain_dir='./pretrain' if [ ! -d ${pretrain_dir} ]; then mkdir ${pretrain_dir} fi cd ${pretrain_dir} if [ ! -f ${MobileNetV1} ]; then wget ${root_url}/${MobileNetV1} unzip ${MobileNetV1} fi if [ ! -f ${ResNet50} ]; then wget ${root_url}/${ResNet50} unzip ${ResNet50} fi cd - # enable GC strategy export FLAGS_fast_eager_deletion_mode=1 export FLAGS_eager_delete_tensor_gb=0.0 # for distillation #----------------- export CUDA_VISIBLE_DEVICES=0,1,2,3 # Fixing name conflicts in distillation cd ${pretrain_dir}/ResNet50_pretrained mv conv1_weights res_conv1_weights mv fc_0.w_0 res_fc.w_0 mv fc_0.b_0 res_fc.b_0 cd - python compress.py \ --model "MobileNet" \ --teacher_model "ResNet50" \ --teacher_pretrained_model ./pretrain/ResNet50_pretrained \ --compress_config ./configs/mobilenetv1_resnet50_distillation.yaml cd ${pretrain_dir}/ResNet50_pretrained mv res_conv1_weights conv1_weights mv res_fc.w_0 fc_0.w_0 mv res_fc.b_0 fc_0.b_0 cd - # for sensitivity filter pruning #------------------------------- #export CUDA_VISIBLE_DEVICES=0 #python compress.py \ #--model "MobileNet" \ #--pretrained_model ./pretrain/MobileNetV1_pretrained \ #--compress_config ./configs/filter_pruning_sen.yaml # for uniform filter pruning #--------------------------- #export CUDA_VISIBLE_DEVICES=0 #python compress.py \ #--model "MobileNet" \ #--pretrained_model ./pretrain/MobileNetV1_pretrained \ #--compress_config ./configs/filter_pruning_uniform.yaml # for quantization #----------------- #export CUDA_VISIBLE_DEVICES=0 #python compress.py \ #--batch_size 64 \ #--model "MobileNet" \ #--pretrained_model ./pretrain/MobileNetV1_pretrained \ #--compress_config ./configs/quantization.yaml # for distillation with quantization #----------------------------------- #export CUDA_VISIBLE_DEVICES=4,5,6,7 # ## Fixing name conflicts in distillation #cd ${pretrain_dir}/ResNet50_pretrained #mv conv1_weights res_conv1_weights #mv fc_0.w_0 res_fc.w_0 #mv fc_0.b_0 res_fc.b_0 #cd - # #python compress.py \ #--model "MobileNet" \ #--teacher_model "ResNet50" \ #--teacher_pretrained_model ./pretrain/ResNet50_pretrained \ #--compress_config ./configs/quantization_dist.yaml # #cd ${pretrain_dir}/ResNet50_pretrained #mv res_conv1_weights conv1_weights #mv res_fc.w_0 fc_0.w_0 #mv res_fc.b_0 fc_0.b_0 #cd - # for uniform filter pruning with quantization #--------------------------------------------- #export CUDA_VISIBLE_DEVICES=0 #python compress.py \ #--model "MobileNet" \ #--pretrained_model ./pretrain/MobileNetV1_pretrained \ #--compress_config ./configs/quantization_pruning.yaml