import paddle.fluid as fluid import math def ctr_deepfm_model(embedding_size, num_field, num_feat, layer_sizes, act, reg, is_sparse=False): init_value_ = 0.1 raw_feat_idx = fluid.data( name='feat_idx', shape=[None, num_field], dtype='int64') raw_feat_value = fluid.data( name='feat_value', shape=[None, num_field], dtype='float32') label = fluid.data( name='label', shape=[None, 1], dtype='float32') # None * 1 feat_idx = fluid.layers.reshape(raw_feat_idx, [-1, 1]) # (None * num_field) * 1 feat_value = fluid.layers.reshape( raw_feat_value, [-1, num_field, 1]) # None * num_field * 1 # -------------------- first order term -------------------- first_weights_re = fluid.embedding( input=feat_idx, is_sparse=is_sparse, dtype='float32', size=[num_feat + 1, 1], padding_idx=0, param_attr=fluid.ParamAttr( initializer=fluid.initializer.TruncatedNormalInitializer( loc=0.0, scale=init_value_), regularizer=fluid.regularizer.L1DecayRegularizer(reg))) first_weights = fluid.layers.reshape( first_weights_re, shape=[-1, num_field, 1]) # None * num_field * 1 y_first_order = fluid.layers.reduce_sum((first_weights * feat_value), 1) # -------------------- second order term -------------------- feat_embeddings_re = fluid.embedding( input=feat_idx, is_sparse=is_sparse, dtype='float32', size=[num_feat + 1, embedding_size], padding_idx=0, param_attr=fluid.ParamAttr( initializer=fluid.initializer.TruncatedNormalInitializer( loc=0.0, scale=init_value_ / math.sqrt(float(embedding_size))))) feat_embeddings = fluid.layers.reshape( feat_embeddings_re, shape=[-1, num_field, embedding_size]) # None * num_field * embedding_size feat_embeddings = feat_embeddings * feat_value # None * num_field * embedding_size # sum_square part summed_features_emb = fluid.layers.reduce_sum(feat_embeddings, 1) # None * embedding_size summed_features_emb_square = fluid.layers.square( summed_features_emb) # None * embedding_size # square_sum part squared_features_emb = fluid.layers.square( feat_embeddings) # None * num_field * embedding_size squared_sum_features_emb = fluid.layers.reduce_sum( squared_features_emb, 1) # None * embedding_size y_second_order = 0.5 * fluid.layers.reduce_sum( summed_features_emb_square - squared_sum_features_emb, 1, keep_dim=True) # None * 1 # -------------------- DNN -------------------- y_dnn = fluid.layers.reshape(feat_embeddings, [-1, num_field * embedding_size]) for s in layer_sizes: y_dnn = fluid.layers.fc( input=y_dnn, size=s, act=act, param_attr=fluid.ParamAttr( initializer=fluid.initializer.TruncatedNormalInitializer( loc=0.0, scale=init_value_ / math.sqrt(float(10)))), bias_attr=fluid.ParamAttr( initializer=fluid.initializer.TruncatedNormalInitializer( loc=0.0, scale=init_value_))) y_dnn = fluid.layers.fc( input=y_dnn, size=1, act=None, param_attr=fluid.ParamAttr( initializer=fluid.initializer.TruncatedNormalInitializer( loc=0.0, scale=init_value_)), bias_attr=fluid.ParamAttr( initializer=fluid.initializer.TruncatedNormalInitializer( loc=0.0, scale=init_value_))) # ------------------- DeepFM ------------------ predict = fluid.layers.sigmoid(y_first_order + y_second_order + y_dnn) cost = fluid.layers.log_loss(input=predict, label=label) batch_cost = fluid.layers.reduce_sum(cost) # for auc predict_2d = fluid.layers.concat([1 - predict, predict], 1) label_int = fluid.layers.cast(label, 'int64') auc_var, batch_auc_var, auc_states = fluid.layers.auc(input=predict_2d, label=label_int, slide_steps=0) return batch_cost, auc_var, [raw_feat_idx, raw_feat_value, label]