#!/usr/bin/env python #coding=utf-8 __all__ = ["ModelConfig"] class ModelConfig(object): vocab_size = 104808 embedding_dim = 300 embedding_droprate = 0.3 lstm_depth = 3 lstm_hidden_dim = 300 lstm_hidden_droprate = 0.3 passage_indep_embedding_dim = 300 passage_aligned_embedding_dim = 300 beam_size = 32 dict_path = "data/featurized/vocab.txt" pretrained_emb_path = "data/featurized/embeddings.npy" class TrainerConfig(object): learning_rate = 1e-3 data_dir = "data/featurized" save_dir = "models" train_batch_size = 4 * 10 test_batch_size = 1 epochs = 100 # for debug print, if set to 0, no information will be printed. show_parameter_status_period = 0 checkpoint_period = 100 log_period = 1 # this is used to resume training, this path can set to previously # trained model. init_model_path = None