{ "cells": [ { "cell_type": "markdown", "id": "03cfffa3-2398-4d55-bf1e-fe3e01f10d68", "metadata": {}, "source": [ "## 1. PP-Matting 模型简介\n", "\n", "在众多图像抠图算法中,为了追求精度,往往需要输入trimap作为辅助信息,但这极大限制了算法的使用性。PP-Matting作为一种trimap-free的抠图方法,有效克服了辅助信息带来的弊端,在Composition-1k和Distinctions-646数据集中取得了SOTA的效果。PP-Matting利用语义分支(SCB)提取图片高级语义信息并通过引导流设计(Guidance Flow)逐步引导高分辨率细节分支(HRBP)对过度区域的细节提取,最后通过融合模块实现语义和细节的融合得到最终的alpha matte。\n", "\n", "更多细节可参考技术报告:https://arxiv.org/abs/2204.09433 。\n", "\n", "更多关于PaddleMatting的内容,可以点击 https://github.com/PaddlePaddle/PaddleSeg/tree/develop/Matting 进行了解。\n", "\n" ] }, { "cell_type": "markdown", "id": "8cbcf510-dc56-43f9-9864-5e1de3c7b272", "metadata": {}, "source": [ "## 2. 模型效果及应用场景\n", "PP-Matting在人像上的抠图效果如下:\n", "
\n",
"\n",
"