# -*- coding: utf-8 -* import numpy as np import preprocess import logging logging.basicConfig(format='%(asctime)s - %(levelname)s - %(message)s') logger = logging.getLogger("fluid") logger.setLevel(logging.INFO) class NumpyRandomInt(object): def __init__(self, a, b, buf_size=1000): self.idx = 0 self.buffer = np.random.random_integers(a, b, buf_size) self.a = a self.b = b def __call__(self): if self.idx == len(self.buffer): self.buffer = np.random.random_integers(self.a, self.b, len(self.buffer)) self.idx = 0 result = self.buffer[self.idx] self.idx += 1 return result class Word2VecReader(object): def __init__(self, dict_path, data_path, filelist, trainer_id, trainer_num, window_size=5): self.window_size_ = window_size self.data_path_ = data_path self.filelist = filelist self.num_non_leaf = 0 self.word_to_id_ = dict() self.id_to_word = dict() self.word_to_path = dict() self.word_to_code = dict() self.trainer_id = trainer_id self.trainer_num = trainer_num word_all_count = 0 word_counts = [] word_id = 0 with open(dict_path, 'r') as f: for line in f: word, count = line.split()[0], int(line.split()[1]) self.word_to_id_[word] = word_id self.id_to_word[word_id] = word # build id to word dict word_id += 1 word_counts.append(count) word_all_count += count with open(dict_path + "_word_to_id_", 'w+') as f6: for k, v in self.word_to_id_.items(): f6.write(str(k) + " " + str(v) + '\n') self.dict_size = len(self.word_to_id_) self.word_frequencys = [ float(count) / word_all_count for count in word_counts ] print("dict_size = " + str( self.dict_size)) + " word_all_count = " + str(word_all_count) with open(dict_path + "_ptable", 'r') as f2: for line in f2: self.word_to_path[line.split(":")[0]] = np.fromstring( line.split(':')[1], dtype=int, sep=' ') self.num_non_leaf = np.fromstring( line.split(':')[1], dtype=int, sep=' ')[0] print("word_ptable dict_size = " + str(len(self.word_to_path))) with open(dict_path + "_pcode", 'r') as f3: for line in f3: self.word_to_code[line.split(":")[0]] = np.fromstring( line.split(':')[1], dtype=int, sep=' ') print("word_pcode dict_size = " + str(len(self.word_to_code))) self.random_generator = NumpyRandomInt(1, self.window_size_ + 1) def get_context_words(self, words, idx): """ Get the context word list of target word. words: the words of the current line idx: input word index window_size: window size """ target_window = self.random_generator() # need to keep in mind that maybe there are no enough words before the target word. start_point = idx - target_window # if (idx - target_window) > 0 else 0 if start_point < 0: start_point = 0 end_point = idx + target_window # context words of the target word targets = words[start_point:idx] + words[idx + 1:end_point + 1] return set(targets) def train(self, with_hs): def _reader(): for file in self.filelist: with open(self.data_path_ + "/" + file, 'r') as f: logger.info("running data in {}".format(self.data_path_ + "/" + file)) count = 1 for line in f: if self.trainer_id == count % self.trainer_num: line = preprocess.text_strip(line) word_ids = [ self.word_to_id_[word] for word in line.split() if word in self.word_to_id_ ] for idx, target_id in enumerate(word_ids): context_word_ids = self.get_context_words(word_ids, idx) for context_id in context_word_ids: yield [target_id], [context_id] else: pass count += 1 def _reader_hs(): for file in self.filelist: with open(self.data_path_ + "/" + file, 'r') as f: logger.info("running data in {}".format(self.data_path_ + "/" + file)) count = 1 for line in f: if self.trainer_id == count % self.trainer_num: line = preprocess.text_strip(line) word_ids = [ self.word_to_id_[word] for word in line.split() if word in self.word_to_id_ ] for idx, target_id in enumerate(word_ids): context_word_ids = self.get_context_words(word_ids, idx) for context_id in context_word_ids: yield [target_id], [context_id], [ self.word_to_code[self.id_to_word[ context_id]] ], [ self.word_to_path[self.id_to_word[ context_id]] ] else: pass count += 1 if not with_hs: return _reader else: return _reader_hs if __name__ == "__main__": window_size = 10 reader = Word2VecReader("data/1-billion_dict", "data/1-billion-word-language-modeling-benchmark-r13output/training-monolingual.tokenized.shuffled/", ['news.en-00001-of-00100'], trainer_id=0, trainer_num=1, window_size=5) # i = 0 for x, y in reader.train(False)(): pass