import os import sys import time import six import numpy as np import math import argparse import paddle.fluid as fluid import paddle import time import utils import net SEED = 102 def parse_args(): parser = argparse.ArgumentParser("gru4rec benchmark.") parser.add_argument( '--train_dir', type=str, default='train_data', help='train file address') parser.add_argument( '--vocab_path', type=str, default='vocab.txt', help='vocab file address') parser.add_argument('--is_local', type=int, default=1, help='whether local') parser.add_argument('--hid_size', type=int, default=100, help='hid size') parser.add_argument( '--model_dir', type=str, default='model_recall20', help='model dir') parser.add_argument( '--batch_size', type=int, default=5, help='num of batch size') parser.add_argument( '--print_batch', type=int, default=10, help='num of print batch') parser.add_argument('--pass_num', type=int, default=10, help='num of epoch') parser.add_argument( '--use_cuda', type=int, default=0, help='whether use gpu') parser.add_argument( '--parallel', type=int, default=0, help='whether parallel') parser.add_argument( '--base_lr', type=float, default=0.01, help='learning rate') parser.add_argument( '--num_devices', type=int, default=1, help='Number of GPU devices') args = parser.parse_args() return args def get_cards(args): return args.num_devices def train(): """ do training """ args = parse_args() hid_size = args.hid_size train_dir = args.train_dir vocab_path = args.vocab_path use_cuda = True if args.use_cuda else False parallel = True if args.parallel else False print("use_cuda:", use_cuda, "parallel:", parallel) batch_size = args.batch_size vocab_size, train_reader = utils.prepare_data( train_dir, vocab_path, batch_size=batch_size * get_cards(args),\ buffer_size=1000, word_freq_threshold=0, is_train=True) # Train program src_wordseq, dst_wordseq, avg_cost, acc = net.network( vocab_size=vocab_size, hid_size=hid_size) # Optimization to minimize lost sgd_optimizer = fluid.optimizer.Adagrad(learning_rate=args.base_lr) sgd_optimizer.minimize(avg_cost) # Initialize executor place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace() exe = fluid.Executor(place) exe.run(fluid.default_startup_program()) if parallel: train_exe = fluid.ParallelExecutor( use_cuda=use_cuda, loss_name=avg_cost.name) else: train_exe = exe pass_num = args.pass_num model_dir = args.model_dir fetch_list = [avg_cost.name] total_time = 0.0 for pass_idx in six.moves.xrange(pass_num): epoch_idx = pass_idx + 1 print("epoch_%d start" % epoch_idx) t0 = time.time() i = 0 newest_ppl = 0 for data in train_reader(): i += 1 lod_src_wordseq = utils.to_lodtensor([dat[0] for dat in data], place) lod_dst_wordseq = utils.to_lodtensor([dat[1] for dat in data], place) ret_avg_cost = train_exe.run(feed={ "src_wordseq": lod_src_wordseq, "dst_wordseq": lod_dst_wordseq }, fetch_list=fetch_list) avg_ppl = np.exp(ret_avg_cost[0]) newest_ppl = np.mean(avg_ppl) if i % args.print_batch == 0: print("step:%d ppl:%.3f" % (i, newest_ppl)) t1 = time.time() total_time += t1 - t0 print("epoch:%d num_steps:%d time_cost(s):%f" % (epoch_idx, i, total_time / epoch_idx)) save_dir = "%s/epoch_%d" % (model_dir, epoch_idx) feed_var_names = ["src_wordseq", "dst_wordseq"] fetch_vars = [avg_cost, acc] fluid.io.save_inference_model(save_dir, feed_var_names, fetch_vars, exe) print("model saved in %s" % save_dir) #exe.close() print("finish training") if __name__ == "__main__": train()