from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import math import random import functools import numpy as np import paddle from imgtool import process_image random.seed(0) DATA_DIR = "./data/Stanford_Online_Products/" TRAIN_LIST = './data/Stanford_Online_Products/Ebay_train.txt' VAL_LIST = './data/Stanford_Online_Products/Ebay_test.txt' def init_sop(mode): if mode == 'train': train_data = {} train_image_list = [] train_list = open(TRAIN_LIST, "r").readlines() for i, item in enumerate(train_list): items = item.strip().split() if items[0] == 'image_id': continue path = items[3] label = int(items[1]) - 1 train_image_list.append((path, label)) if label not in train_data: train_data[label] = [] train_data[label].append(path) random.shuffle(train_image_list) print("{} dataset size: {}".format(mode, len(train_data))) return train_data, train_image_list else: val_data = {} val_image_list = [] test_image_list = [] val_list = open(VAL_LIST, "r").readlines() for i, item in enumerate(val_list): items = item.strip().split() if items[0] == 'image_id': continue path = items[3] label = int(items[1]) val_image_list.append((path, label)) test_image_list.append(path) if label not in val_data: val_data[label] = [] val_data[label].append(path) print("{} dataset size: {}".format(mode, len(val_data))) if mode == 'val': return val_data, val_image_list else: return test_image_list def common_iterator(data, settings): batch_size = settings.train_batch_size samples_each_class = settings.samples_each_class assert (batch_size % samples_each_class == 0) class_num = batch_size // samples_each_class def train_iterator(): count = 0 labs = list(data.keys()) lab_num = len(labs) ind = list(range(0, lab_num)) while True: random.shuffle(ind) ind_sample = ind[:class_num] for ind_i in ind_sample: lab = labs[ind_i] data_list = data[lab] data_ind = list(range(0, len(data_list))) random.shuffle(data_ind) anchor_ind = data_ind[:samples_each_class] for anchor_ind_i in anchor_ind: anchor_path = DATA_DIR + data_list[anchor_ind_i] yield anchor_path, lab count += 1 if count >= settings.total_iter_num + 1: return return train_iterator def triplet_iterator(data, settings): batch_size = settings.train_batch_size assert (batch_size % 3 == 0) def train_iterator(): total_count = settings.train_batch_size * (settings.total_iter_num + 1) count = 0 labs = list(data.keys()) lab_num = len(labs) ind = list(range(0, lab_num)) while True: random.shuffle(ind) ind_pos, ind_neg = ind[:2] lab_pos = labs[ind_pos] pos_data_list = data[lab_pos] data_ind = list(range(0, len(pos_data_list))) random.shuffle(data_ind) anchor_ind, pos_ind = data_ind[:2] lab_neg = labs[ind_neg] neg_data_list = data[lab_neg] neg_ind = random.randint(0, len(neg_data_list) - 1) anchor_path = DATA_DIR + pos_data_list[anchor_ind] yield anchor_path, lab_pos pos_path = DATA_DIR + pos_data_list[pos_ind] yield pos_path, lab_pos neg_path = DATA_DIR + neg_data_list[neg_ind] yield neg_path, lab_neg count += 3 if count >= total_count: return return train_iterator def arcmargin_iterator(data, settings): def train_iterator(): total_count = settings.train_batch_size * (settings.total_iter_num + 1) count = 0 while True: for items in data: path, label = items path = DATA_DIR + path yield path, label count += 1 if count >= total_count: return return train_iterator def image_iterator(data, mode): def val_iterator(): for items in data: path, label = items path = DATA_DIR + path yield path, label def test_iterator(): for item in data: path = item path = DATA_DIR + path yield [path] if mode == 'val': return val_iterator else: return test_iterator def createreader(settings, mode): def metric_reader(): if mode == 'train': train_data, train_image_list = init_sop('train') loss_name = settings.loss_name if loss_name in ["softmax", "arcmargin"]: return arcmargin_iterator(train_image_list, settings)() elif loss_name == 'triplet': return triplet_iterator(train_data, settings)() else: return common_iterator(train_data, settings)() elif mode == 'val': val_data, val_image_list = init_sop('val') return image_iterator(val_image_list, 'val')() else: test_image_list = init_sop('test') return image_iterator(test_image_list, 'test')() image_shape = settings.image_shape.split(',') assert(image_shape[1] == image_shape[2]) image_size = int(image_shape[2]) keep_order = False if mode != 'train' or settings.loss_name in ['softmax', 'arcmargin'] else True image_mapper = functools.partial(process_image, mode=mode, color_jitter=False, rotate=False, crop_size=image_size) reader = paddle.reader.xmap_readers( image_mapper, metric_reader, 8, 1000, order=keep_order) return reader def train(settings): return createreader(settings, "train") def test(settings): return createreader(settings, "val") def infer(settings): return createreader(settings, "test")