from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import numpy as np import time import sys import paddle.fluid as fluid import math from paddle.fluid.param_attr import ParamAttr __all__ = ["DPN", "DPN68", "DPN92", "DPN98", "DPN107", "DPN131"] train_parameters = { "input_size": [3, 224, 224], "input_mean": [0.485, 0.456, 0.406], "input_std": [0.229, 0.224, 0.225], "learning_strategy": { "name": "piecewise_decay", "batch_size": 256, "epochs": [30, 60, 90], "steps": [0.1, 0.01, 0.001, 0.0001] } } class DPN(object): def __init__(self, layers=68): self.params = train_parameters self.layers = layers def net(self, input, class_dim=1000): # get network args args = self.get_net_args(self.layers) bws = args['bw'] inc_sec = args['inc_sec'] rs = args['bw'] k_r = args['k_r'] k_sec = args['k_sec'] G = args['G'] init_num_filter = args['init_num_filter'] init_filter_size = args['init_filter_size'] init_padding = args['init_padding'] ## define Dual Path Network # conv1 conv1_x_1 = fluid.layers.conv2d( input=input, num_filters=init_num_filter, filter_size=init_filter_size, stride=2, padding=init_padding, groups=1, act=None, bias_attr=False, name="conv1", param_attr=ParamAttr(name="conv1_weights"), ) conv1_x_1 = fluid.layers.batch_norm( input=conv1_x_1, act='relu', is_test=False, name="conv1_bn", param_attr=ParamAttr(name='conv1_bn_scale'), bias_attr=ParamAttr('conv1_bn_offset'), moving_mean_name='conv1_bn_mean', moving_variance_name='conv1_bn_variance', ) convX_x_x = fluid.layers.pool2d( input=conv1_x_1, pool_size=3, pool_stride=2, pool_padding=1, pool_type='max', name="pool1") #conv2 - conv5 match_list, num = [], 0 for gc in range(4): bw = bws[gc] inc = inc_sec[gc] R = (k_r * bw) // rs[gc] if gc == 0: _type1 = 'proj' _type2 = 'normal' match = 1 else: _type1 = 'down' _type2 = 'normal' match = match + k_sec[gc - 1] match_list.append(match) convX_x_x = self.dual_path_factory( convX_x_x, R, R, bw, inc, G, _type1, name="dpn" + str(match)) for i_ly in range(2, k_sec[gc] + 1): num += 1 if num in match_list: num += 1 convX_x_x = self.dual_path_factory( convX_x_x, R, R, bw, inc, G, _type2, name="dpn" + str(num)) conv5_x_x = fluid.layers.concat(convX_x_x, axis=1) conv5_x_x = fluid.layers.batch_norm( input=conv5_x_x, act='relu', is_test=False, name="final_concat_bn", param_attr=ParamAttr(name='final_concat_bn_scale'), bias_attr=ParamAttr('final_concat_bn_offset'), moving_mean_name='final_concat_bn_mean', moving_variance_name='final_concat_bn_variance', ) pool5 = fluid.layers.pool2d( input=conv5_x_x, pool_size=7, pool_stride=1, pool_padding=0, pool_type='avg', ) stdv = 0.01 param_attr = fluid.param_attr.ParamAttr( initializer=fluid.initializer.Uniform(-stdv, stdv)) fc6 = fluid.layers.fc(input=pool5, size=class_dim, param_attr=param_attr, name="fc6") return fc6 def get_net_args(self, layers): if layers == 68: k_r = 128 G = 32 k_sec = [3, 4, 12, 3] inc_sec = [16, 32, 32, 64] bw = [64, 128, 256, 512] r = [64, 64, 64, 64] init_num_filter = 10 init_filter_size = 3 init_padding = 1 elif layers == 92: k_r = 96 G = 32 k_sec = [3, 4, 20, 3] inc_sec = [16, 32, 24, 128] bw = [256, 512, 1024, 2048] r = [256, 256, 256, 256] init_num_filter = 64 init_filter_size = 7 init_padding = 3 elif layers == 98: k_r = 160 G = 40 k_sec = [3, 6, 20, 3] inc_sec = [16, 32, 32, 128] bw = [256, 512, 1024, 2048] r = [256, 256, 256, 256] init_num_filter = 96 init_filter_size = 7 init_padding = 3 elif layers == 107: k_r = 200 G = 50 k_sec = [4, 8, 20, 3] inc_sec = [20, 64, 64, 128] bw = [256, 512, 1024, 2048] r = [256, 256, 256, 256] init_num_filter = 128 init_filter_size = 7 init_padding = 3 elif layers == 131: k_r = 160 G = 40 k_sec = [4, 8, 28, 3] inc_sec = [16, 32, 32, 128] bw = [256, 512, 1024, 2048] r = [256, 256, 256, 256] init_num_filter = 128 init_filter_size = 7 init_padding = 3 else: raise NotImplementedError net_arg = { 'k_r': k_r, 'G': G, 'k_sec': k_sec, 'inc_sec': inc_sec, 'bw': bw, 'r': r } net_arg['init_num_filter'] = init_num_filter net_arg['init_filter_size'] = init_filter_size net_arg['init_padding'] = init_padding return net_arg def dual_path_factory(self, data, num_1x1_a, num_3x3_b, num_1x1_c, inc, G, _type='normal', name=None): kw = 3 kh = 3 pw = (kw - 1) // 2 ph = (kh - 1) // 2 # type if _type is 'proj': key_stride = 1 has_proj = True if _type is 'down': key_stride = 2 has_proj = True if _type is 'normal': key_stride = 1 has_proj = False # PROJ if type(data) is list: data_in = fluid.layers.concat([data[0], data[1]], axis=1) else: data_in = data if has_proj: c1x1_w = self.bn_ac_conv( data=data_in, num_filter=(num_1x1_c + 2 * inc), kernel=(1, 1), pad=(0, 0), stride=(key_stride, key_stride), name=name + "_match") data_o1, data_o2 = fluid.layers.split( c1x1_w, num_or_sections=[num_1x1_c, 2 * inc], dim=1, name=name + "_match_conv_Slice") else: data_o1 = data[0] data_o2 = data[1] # MAIN c1x1_a = self.bn_ac_conv( data=data_in, num_filter=num_1x1_a, kernel=(1, 1), pad=(0, 0), name=name + "_conv1") c3x3_b = self.bn_ac_conv( data=c1x1_a, num_filter=num_3x3_b, kernel=(kw, kh), pad=(pw, ph), stride=(key_stride, key_stride), num_group=G, name=name + "_conv2") c1x1_c = self.bn_ac_conv( data=c3x3_b, num_filter=(num_1x1_c + inc), kernel=(1, 1), pad=(0, 0), name=name + "_conv3") c1x1_c1, c1x1_c2 = fluid.layers.split( c1x1_c, num_or_sections=[num_1x1_c, inc], dim=1, name=name + "_conv3_Slice") # OUTPUTS summ = fluid.layers.elementwise_add( x=data_o1, y=c1x1_c1, name=name + "_elewise") dense = fluid.layers.concat( [data_o2, c1x1_c2], axis=1, name=name + "_concat") return [summ, dense] def bn_ac_conv(self, data, num_filter, kernel, pad, stride=(1, 1), num_group=1, name=None): bn_ac = fluid.layers.batch_norm( input=data, act='relu', is_test=False, name=name + '.output.1', param_attr=ParamAttr(name=name + '_bn_scale'), bias_attr=ParamAttr(name + '_bn_offset'), moving_mean_name=name + '_bn_mean', moving_variance_name=name + '_bn_variance', ) bn_ac_conv = fluid.layers.conv2d( input=bn_ac, num_filters=num_filter, filter_size=kernel, stride=stride, padding=pad, groups=num_group, act=None, bias_attr=False, param_attr=ParamAttr(name=name + "_weights")) return bn_ac_conv def DPN68(): model = DPN(layers=68) return model def DPN92(): onvodel = DPN(layers=92) return model def DPN98(): model = DPN(layers=98) return model def DPN107(): model = DPN(layers=107) return model def DPN131(): model = DPN(layers=131) return model