from __future__ import absolute_import from __future__ import division from __future__ import print_function import paddle import paddle.fluid as fluid import math __all__ = ['AlexNet'] train_parameters = { "input_size": [3, 224, 224], "input_mean": [0.485, 0.456, 0.406], "input_std": [0.229, 0.224, 0.225], "learning_strategy": { "name": "piecewise_decay", "batch_size": 256, "epochs": [40, 70, 100], "steps": [0.01, 0.001, 0.0001, 0.00001] } } class AlexNet(): def __init__(self): self.params = train_parameters def net(self, input, class_dim=1000): stdv = 1.0 / math.sqrt(input.shape[1] * 11 * 11) layer_name = [ "conv1", "conv2", "conv3", "conv4", "conv5", "fc6", "fc7", "fc8" ] conv1 = fluid.layers.conv2d( input=input, num_filters=64, filter_size=11, stride=4, padding=2, groups=1, act='relu', bias_attr=fluid.param_attr.ParamAttr( initializer=fluid.initializer.Uniform(-stdv, stdv), name=layer_name[0] + "_offset"), param_attr=fluid.param_attr.ParamAttr( initializer=fluid.initializer.Uniform(-stdv, stdv), name=layer_name[0] + "_weights")) pool1 = fluid.layers.pool2d( input=conv1, pool_size=3, pool_stride=2, pool_padding=0, pool_type='max') stdv = 1.0 / math.sqrt(pool1.shape[1] * 5 * 5) conv2 = fluid.layers.conv2d( input=pool1, num_filters=192, filter_size=5, stride=1, padding=2, groups=1, act='relu', bias_attr=fluid.param_attr.ParamAttr( initializer=fluid.initializer.Uniform(-stdv, stdv), name=layer_name[1] + "_offset"), param_attr=fluid.param_attr.ParamAttr( initializer=fluid.initializer.Uniform(-stdv, stdv), name=layer_name[1] + "_weights")) pool2 = fluid.layers.pool2d( input=conv2, pool_size=3, pool_stride=2, pool_padding=0, pool_type='max') stdv = 1.0 / math.sqrt(pool2.shape[1] * 3 * 3) conv3 = fluid.layers.conv2d( input=pool2, num_filters=384, filter_size=3, stride=1, padding=1, groups=1, act='relu', bias_attr=fluid.param_attr.ParamAttr( initializer=fluid.initializer.Uniform(-stdv, stdv), name=layer_name[2] + "_offset"), param_attr=fluid.param_attr.ParamAttr( initializer=fluid.initializer.Uniform(-stdv, stdv), name=layer_name[2] + "_weights")) stdv = 1.0 / math.sqrt(conv3.shape[1] * 3 * 3) conv4 = fluid.layers.conv2d( input=conv3, num_filters=256, filter_size=3, stride=1, padding=1, groups=1, act='relu', bias_attr=fluid.param_attr.ParamAttr( initializer=fluid.initializer.Uniform(-stdv, stdv), name=layer_name[3] + "_offset"), param_attr=fluid.param_attr.ParamAttr( initializer=fluid.initializer.Uniform(-stdv, stdv), name=layer_name[3] + "_weights")) stdv = 1.0 / math.sqrt(conv4.shape[1] * 3 * 3) conv5 = fluid.layers.conv2d( input=conv4, num_filters=256, filter_size=3, stride=1, padding=1, groups=1, act='relu', bias_attr=fluid.param_attr.ParamAttr( initializer=fluid.initializer.Uniform(-stdv, stdv), name=layer_name[4] + "_offset"), param_attr=fluid.param_attr.ParamAttr( initializer=fluid.initializer.Uniform(-stdv, stdv), name=layer_name[4] + "_weights")) pool5 = fluid.layers.pool2d( input=conv5, pool_size=3, pool_stride=2, pool_padding=0, pool_type='max') drop6 = fluid.layers.dropout(x=pool5, dropout_prob=0.5) stdv = 1.0 / math.sqrt(drop6.shape[1] * drop6.shape[2] * drop6.shape[3] * 1.0) fc6 = fluid.layers.fc( input=drop6, size=4096, act='relu', bias_attr=fluid.param_attr.ParamAttr( initializer=fluid.initializer.Uniform(-stdv, stdv), name=layer_name[5] + "_offset"), param_attr=fluid.param_attr.ParamAttr( initializer=fluid.initializer.Uniform(-stdv, stdv), name=layer_name[5] + "_weights")) drop7 = fluid.layers.dropout(x=fc6, dropout_prob=0.5) stdv = 1.0 / math.sqrt(drop7.shape[1] * 1.0) fc7 = fluid.layers.fc( input=drop7, size=4096, act='relu', bias_attr=fluid.param_attr.ParamAttr( initializer=fluid.initializer.Uniform(-stdv, stdv), name=layer_name[6] + "_offset"), param_attr=fluid.param_attr.ParamAttr( initializer=fluid.initializer.Uniform(-stdv, stdv), name=layer_name[6] + "_weights")) stdv = 1.0 / math.sqrt(fc7.shape[1] * 1.0) out = fluid.layers.fc( input=fc7, size=class_dim, bias_attr=fluid.param_attr.ParamAttr( initializer=fluid.initializer.Uniform(-stdv, stdv), name=layer_name[7] + "_offset"), param_attr=fluid.param_attr.ParamAttr( initializer=fluid.initializer.Uniform(-stdv, stdv), name=layer_name[7] + "_weights")) return out