import paddle.v2 as paddle import paddle.fluid as fluid from paddle.fluid.initializer import MSRA from paddle.fluid.param_attr import ParamAttr def conv_bn(input, filter_size, num_filters, stride, padding, channels=None, num_groups=1, act='relu', use_cudnn=True): parameter_attr = ParamAttr(learning_rate=0.1, initializer=MSRA()) conv = fluid.layers.conv2d( input=input, num_filters=num_filters, filter_size=filter_size, stride=stride, padding=padding, groups=num_groups, act=None, use_cudnn=use_cudnn, param_attr=parameter_attr, bias_attr=False) parameter_attr = ParamAttr(learning_rate=0.1, initializer=MSRA()) bias_attr = ParamAttr(learning_rate=0.2) return fluid.layers.batch_norm(input=conv, act=act) def depthwise_separable(input, num_filters1, num_filters2, num_groups, stride, scale): depthwise_conv = conv_bn( input=input, filter_size=3, num_filters=int(num_filters1 * scale), stride=stride, padding=1, num_groups=int(num_groups * scale), use_cudnn=False) pointwise_conv = conv_bn( input=depthwise_conv, filter_size=1, num_filters=int(num_filters2 * scale), stride=1, padding=0) return pointwise_conv def extra_block(input, num_filters1, num_filters2, num_groups, stride, scale): # 1x1 conv pointwise_conv = conv_bn( input=input, filter_size=1, num_filters=int(num_filters1 * scale), stride=1, num_groups=int(num_groups * scale), padding=0) # 3x3 conv normal_conv = conv_bn( input=pointwise_conv, filter_size=3, num_filters=int(num_filters2 * scale), stride=2, num_groups=int(num_groups * scale), padding=1) return normal_conv def mobile_net(num_classes, img, img_shape, scale=1.0): # 300x300 tmp = conv_bn(img, 3, int(32 * scale), 2, 1, 3) # 150x150 tmp = depthwise_separable(tmp, 32, 64, 32, 1, scale) tmp = depthwise_separable(tmp, 64, 128, 64, 2, scale) # 75x75 tmp = depthwise_separable(tmp, 128, 128, 128, 1, scale) tmp = depthwise_separable(tmp, 128, 256, 128, 2, scale) # 38x38 tmp = depthwise_separable(tmp, 256, 256, 256, 1, scale) tmp = depthwise_separable(tmp, 256, 512, 256, 2, scale) # 19x19 for i in range(5): tmp = depthwise_separable(tmp, 512, 512, 512, 1, scale) module11 = tmp tmp = depthwise_separable(tmp, 512, 1024, 512, 2, scale) # 10x10 module13 = depthwise_separable(tmp, 1024, 1024, 1024, 1, scale) module14 = extra_block(module13, 256, 512, 1, 2, scale) # 5x5 module15 = extra_block(module14, 128, 256, 1, 2, scale) # 3x3 module16 = extra_block(module15, 128, 256, 1, 2, scale) # 2x2 module17 = extra_block(module16, 64, 128, 1, 2, scale) mbox_locs, mbox_confs, box, box_var = fluid.layers.multi_box_head( inputs=[module11, module13, module14, module15, module16, module17], image=img, num_classes=num_classes, min_ratio=20, max_ratio=90, min_sizes=[60.0, 105.0, 150.0, 195.0, 240.0, 285.0], max_sizes=[[], 150.0, 195.0, 240.0, 285.0, 300.0], aspect_ratios=[[2.], [2., 3.], [2., 3.], [2., 3.], [2., 3.], [2., 3.]], base_size=img_shape[2], offset=0.5, flip=True) return mbox_locs, mbox_confs, box, box_var