from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import argparse import paddle.fluid as fluid import data_utils.augmentor.trans_mean_variance_norm as trans_mean_variance_norm import data_utils.augmentor.trans_add_delta as trans_add_delta import data_utils.augmentor.trans_splice as trans_splice import data_utils.data_reader as reader from data_utils.util import lodtensor_to_ndarray def parse_args(): parser = argparse.ArgumentParser("Inference for stacked LSTMP model.") parser.add_argument( '--batch_size', type=int, default=32, help='The sequence number of a batch data. (default: %(default)d)') parser.add_argument( '--device', type=str, default='GPU', choices=['CPU', 'GPU'], help='The device type. (default: %(default)s)') parser.add_argument( '--mean_var', type=str, default='data/global_mean_var_search26kHr', help="The path for feature's global mean and variance. " "(default: %(default)s)") parser.add_argument( '--infer_feature_lst', type=str, default='data/infer_feature.lst', help='The feature list path for inference. (default: %(default)s)') parser.add_argument( '--infer_label_lst', type=str, default='data/infer_label.lst', help='The label list path for inference. (default: %(default)s)') parser.add_argument( '--infer_model_path', type=str, default='./infer_models/deep_asr.pass_0.infer.model/', help='The directory for loading inference model. ' '(default: %(default)s)') args = parser.parse_args() return args def print_arguments(args): print('----------- Configuration Arguments -----------') for arg, value in sorted(vars(args).iteritems()): print('%s: %s' % (arg, value)) print('------------------------------------------------') def split_infer_result(infer_seq, lod): infer_batch = [] for i in xrange(0, len(lod[0]) - 1): infer_batch.append(infer_seq[lod[0][i]:lod[0][i + 1]]) return infer_batch def infer(args): """ Gets one batch of feature data and predicts labels for each sample. """ if not os.path.exists(args.infer_model_path): raise IOError("Invalid inference model path!") place = fluid.CUDAPlace(0) if args.device == 'GPU' else fluid.CPUPlace() exe = fluid.Executor(place) # load model [infer_program, feed_dict, fetch_targets] = fluid.io.load_inference_model(args.infer_model_path, exe) ltrans = [ trans_add_delta.TransAddDelta(2, 2), trans_mean_variance_norm.TransMeanVarianceNorm(args.mean_var), trans_splice.TransSplice() ] infer_data_reader = reader.DataReader(args.infer_feature_lst, args.infer_label_lst) infer_data_reader.set_transformers(ltrans) feature_t = fluid.LoDTensor() one_batch = infer_data_reader.batch_iterator(args.batch_size, 1).next() (features, labels, lod) = one_batch feature_t.set(features, place) feature_t.set_lod([lod]) results = exe.run(infer_program, feed={feed_dict[0]: feature_t}, fetch_list=fetch_targets, return_numpy=False) probs, lod = lodtensor_to_ndarray(results[0]) preds = probs.argmax(axis=1) infer_batch = split_infer_result(preds, lod) for index, sample in enumerate(infer_batch): print("result %d: " % index, sample, '\n') if __name__ == '__main__': args = parse_args() print_arguments(args) infer(args)