# Configure input data set in local filesystem TRAIN_MANIFEST="../datasets/manifest.train" DEV_MANIFEST="../datasets/manifest.dev" VOCAB_FILE="../datasets/vocab/eng_vocab.txt" MEAN_STD_FILE="../mean_std.npz" # Configure output path in PaddleCloud filesystem CLOUD_DATA_DIR="/pfs/dlnel/home/sunxinghai@baidu.com/deepspeech2/data" CLOUD_MODEL_DIR="/pfs/dlnel/home/sunxinghai@baidu.com/deepspeech2/model" # Configure cloud resources NUM_CPU=12 NUM_GPU=8 NUM_NODE=1 MEMORY="10Gi" IS_LOCAL="True" # Pack and upload local data to PaddleCloud filesystem python upload_data.py \ --train_manifest_path=${TRAIN_MANIFEST} \ --dev_manifest_path=${DEV_MANIFEST} \ --vocab_file=${VOCAB_FILE} \ --mean_std_file=${MEAN_STD_FILE} \ --cloud_data_path=${CLOUD_DATA_DIR} if [ $? -ne 0 ] then echo "upload data failed!" exit 1 fi # Submit job to PaddleCloud JOB_NAME=deepspeech-`date +%Y%m%d%H%M%S` DS2_PATH=${PWD%/*} cp -f pcloud_train.sh ${DS2_PATH} paddlecloud submit \ -image bootstrapper:5000/wanghaoshuang/pcloud_ds2:latest \ -jobname ${JOB_NAME} \ -cpu ${NUM_CPU} \ -gpu ${NUM_GPU} \ -memory ${MEMORY} \ -parallelism ${NUM_NODE} \ -pscpu 1 \ -pservers 1 \ -psmemory ${MEMORY} \ -passes 1 \ -entry "sh pcloud_train.sh ${CLOUD_DATA_DIR} ${CLOUD_MODEL_DIR} ${NUM_CPU} ${NUM_GPU} ${IS_LOCAL}" \ ${DS2_PATH} rm ${DS2_PATH}/pcloud_train.sh