# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np import time import os import random import math import paddle import paddle.fluid as fluid import paddle.fluid.core as core import paddle.fluid.framework as framework from paddle.fluid.executor import Executor import reader import sys if sys.version[0] == '2': reload(sys) sys.setdefaultencoding("utf-8") sys.path.append('..') import os os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3" from args import * import lm_model import logging import pickle SEED = 123 def get_current_model_para(train_prog, train_exe): param_list = train_prog.block(0).all_parameters() param_name_list = [p.name for p in param_list] vals = {} for p_name in param_name_list: p_array = np.array(fluid.global_scope().find_var(p_name).get_tensor()) vals[p_name] = p_array return vals def save_para_npz(train_prog, train_exe): print("begin to save model to model_base") param_list = train_prog.block(0).all_parameters() param_name_list = [p.name for p in param_list] vals = {} for p_name in param_name_list: p_array = np.array(fluid.global_scope().find_var(p_name).get_tensor()) vals[p_name] = p_array emb = vals["embedding_para"] print("begin to save model to model_base") np.savez("mode_base", **vals) def train(): args = parse_args() model_type = args.model_type logger = logging.getLogger("lm") logger.setLevel(logging.INFO) formatter = logging.Formatter( '%(asctime)s - %(name)s - %(levelname)s - %(message)s') if args.enable_ce: fluid.default_startup_program().random_seed = SEED if args.log_path: file_handler = logging.FileHandler(args.log_path) file_handler.setLevel(logging.INFO) file_handler.setFormatter(formatter) logger.addHandler(file_handler) else: console_handler = logging.StreamHandler() console_handler.setLevel(logging.INFO) console_handler.setFormatter(formatter) logger.addHandler(console_handler) logger.info('Running with args : {}'.format(args)) vocab_size = 10000 if model_type == "test": num_layers = 1 batch_size = 2 hidden_size = 10 num_steps = 3 init_scale = 0.1 max_grad_norm = 5.0 epoch_start_decay = 1 max_epoch = 1 dropout = 0.0 lr_decay = 0.5 base_learning_rate = 1.0 elif model_type == "small": num_layers = 2 batch_size = 20 hidden_size = 200 num_steps = 20 init_scale = 0.1 max_grad_norm = 5.0 epoch_start_decay = 4 max_epoch = 13 dropout = 0.0 lr_decay = 0.5 base_learning_rate = 1.0 elif model_type == "medium": num_layers = 2 batch_size = 20 hidden_size = 650 num_steps = 35 init_scale = 0.05 max_grad_norm = 5.0 epoch_start_decay = 6 max_epoch = 39 dropout = 0.5 lr_decay = 0.8 base_learning_rate = 1.0 elif model_type == "large": num_layers = 2 batch_size = 20 hidden_size = 1500 num_steps = 35 init_scale = 0.04 max_grad_norm = 10.0 epoch_start_decay = 14 max_epoch = 55 dropout = 0.65 lr_decay = 1.0 / 1.15 base_learning_rate = 1.0 else: print("model type not support") return # Training process loss, last_hidden, last_cell, feed_order = lm_model.lm_model( hidden_size, vocab_size, batch_size, num_layers=num_layers, num_steps=num_steps, init_scale=init_scale, dropout=dropout) # clone from default main program and use it as the validation program main_program = fluid.default_main_program() inference_program = fluid.default_main_program().clone(for_test=True) fluid.clip.set_gradient_clip(clip=fluid.clip.GradientClipByGlobalNorm( clip_norm=max_grad_norm)) learning_rate = fluid.layers.create_global_var( name="learning_rate", shape=[1], value=1.0, dtype='float32', persistable=True) optimizer = fluid.optimizer.SGD(learning_rate=learning_rate) optimizer.minimize(loss) place = core.CUDAPlace(0) if args.use_gpu else core.CPUPlace() exe = Executor(place) exe.run(framework.default_startup_program()) data_path = args.data_path print("begin to load data") raw_data = reader.ptb_raw_data(data_path) print("finished load data") train_data, valid_data, test_data, _ = raw_data def prepare_input(batch, init_hidden, init_cell, epoch_id=0, with_lr=True): x, y = batch new_lr = base_learning_rate * (lr_decay**max( epoch_id + 1 - epoch_start_decay, 0.0)) lr = np.ones((1), dtype='float32') * new_lr res = {} x = x.reshape((-1, num_steps, 1)) y = y.reshape((-1, 1)) res['x'] = x res['y'] = y res['init_hidden'] = init_hidden res['init_cell'] = init_cell if with_lr: res['learning_rate'] = lr return res def eval(data): # when eval the batch_size set to 1 eval_data_iter = reader.get_data_iter(data, 1, num_steps) total_loss = 0.0 iters = 0 init_hidden = np.zeros((num_layers, 1, hidden_size), dtype='float32') init_cell = np.zeros((num_layers, 1, hidden_size), dtype='float32') for batch_id, batch in enumerate(eval_data_iter): input_data_feed = prepare_input( batch, init_hidden, init_cell, epoch_id, with_lr=False) fetch_outs = exe.run( inference_program, feed=input_data_feed, fetch_list=[loss.name, last_hidden.name, last_cell.name]) cost_train = np.array(fetch_outs[0]) init_hidden = np.array(fetch_outs[1]) init_cell = np.array(fetch_outs[2]) total_loss += cost_train iters += num_steps ppl = np.exp(total_loss / iters) return ppl # get train epoch size batch_len = len(train_data) // batch_size epoch_size = (batch_len - 1) // num_steps log_interval = epoch_size // 10 total_time = 0.0 for epoch_id in range(max_epoch): start_time = time.time() print("epoch id", epoch_id) train_data_iter = reader.get_data_iter(train_data, batch_size, num_steps) total_loss = 0 init_hidden = None init_cell = None #debug_para(fluid.framework.default_main_program(), parallel_executor) total_loss = 0 iters = 0 init_hidden = np.zeros( (num_layers, batch_size, hidden_size), dtype='float32') init_cell = np.zeros( (num_layers, batch_size, hidden_size), dtype='float32') for batch_id, batch in enumerate(train_data_iter): input_data_feed = prepare_input( batch, init_hidden, init_cell, epoch_id=epoch_id) fetch_outs = exe.run(feed=input_data_feed, fetch_list=[ loss.name, last_hidden.name, last_cell.name, 'learning_rate' ]) cost_train = np.array(fetch_outs[0]) init_hidden = np.array(fetch_outs[1]) init_cell = np.array(fetch_outs[2]) lr = np.array(fetch_outs[3]) total_loss += cost_train iters += num_steps if batch_id > 0 and batch_id % log_interval == 0: ppl = np.exp(total_loss / iters) print("ppl ", batch_id, ppl[0], lr[0]) ppl = np.exp(total_loss / iters) if epoch_id == 0 and ppl[0] > 1000: # for bad init, after first epoch, the loss is over 1000 # no more need to continue return end_time = time.time() total_time += end_time - start_time print("train ppl", ppl[0]) if epoch_id == max_epoch - 1 and args.enable_ce: print("lstm_language_model_duration\t%s" % (total_time / max_epoch)) print("lstm_language_model_loss\t%s" % ppl[0]) model_path = os.path.join("model_new/", str(epoch_id)) if not os.path.isdir(model_path): os.makedirs(model_path) fluid.io.save_persistables( executor=exe, dirname=model_path, main_program=main_program) valid_ppl = eval(valid_data) print("valid ppl", valid_ppl[0]) test_ppl = eval(test_data) print("test ppl", test_ppl[0]) if __name__ == '__main__': train()