import argparse import logging import numpy as np # disable gpu training for this example import os os.environ["CUDA_VISIBLE_DEVICES"] = "" import paddle import paddle.fluid as fluid import reader from network_conf import ctr_dnn_model logging.basicConfig( format='%(asctime)s - %(levelname)s - %(message)s') logger = logging.getLogger("fluid") logger.setLevel(logging.INFO) def parse_args(): parser = argparse.ArgumentParser(description="PaddlePaddle DeepFM example") parser.add_argument( '--model_path', type=str, required=True, help="The path of model parameters gz file") parser.add_argument( '--data_path', type=str, required=True, help="The path of the dataset to infer") parser.add_argument( '--embedding_size', type=int, default=10, help="The size for embedding layer (default:10)") parser.add_argument( '--sparse_feature_dim', type=int, default=1000001, help="The size for embedding layer (default:1000001)") parser.add_argument( '--batch_size', type=int, default=1000, help="The size of mini-batch (default:1000)") return parser.parse_args() def infer(): args = parse_args() place = fluid.CPUPlace() inference_scope = fluid.core.Scope() dataset = reader.CriteoDataset(args.sparse_feature_dim) test_reader = paddle.batch(dataset.test([args.data_path]), batch_size=args.batch_size) startup_program = fluid.framework.Program() test_program = fluid.framework.Program() with fluid.framework.program_guard(test_program, startup_program): loss, data_list, auc_var, batch_auc_var = ctr_dnn_model(args.embedding_size, args.sparse_feature_dim) exe = fluid.Executor(place) feeder = fluid.DataFeeder(feed_list=data_list, place=place) with fluid.scope_guard(inference_scope): [inference_program, _, fetch_targets] = fluid.io.load_inference_model(args.model_path, exe) def set_zero(var_name): param = inference_scope.var(var_name).get_tensor() param_array = np.zeros(param._get_dims()).astype("int64") param.set(param_array, place) auc_states_names = ['_generated_var_2', '_generated_var_3'] for name in auc_states_names: set_zero(name) for batch_id, data in enumerate(test_reader()): loss_val, auc_val = exe.run(inference_program, feed=feeder.feed(data), fetch_list=fetch_targets) if batch_id % 100 == 0: logger.info("TEST --> batch: {} loss: {} auc: {}".format(batch_id, loss_val/args.batch_size, auc_val)) if __name__ == '__main__': infer()