import os import time import numpy as np import argparse import functools from PIL import Image from PIL import ImageDraw from PIL import ImageFont import paddle import paddle.fluid as fluid import reader from mobilenet_ssd import mobile_net from utility import add_arguments, print_arguments parser = argparse.ArgumentParser(description=__doc__) add_arg = functools.partial(add_arguments, argparser=parser) # yapf: disable add_arg('dataset', str, 'pascalvoc', "coco and pascalvoc.") add_arg('use_gpu', bool, True, "Whether use GPU.") add_arg('image_path', str, '', "The image used to inference and visualize.") add_arg('model_dir', str, '', "The model path.") add_arg('nms_threshold', float, 0.45, "NMS threshold.") add_arg('confs_threshold', float, 0.5, "Confidence threshold to draw bbox.") add_arg('resize_h', int, 300, "The resized image height.") add_arg('resize_w', int, 300, "The resized image height.") add_arg('mean_value_B', float, 127.5, "Mean value for B channel which will be subtracted.") #123.68 add_arg('mean_value_G', float, 127.5, "Mean value for G channel which will be subtracted.") #116.78 add_arg('mean_value_R', float, 127.5, "Mean value for R channel which will be subtracted.") #103.94 # yapf: enable def infer(args, data_args, image_path, model_dir): image_shape = [3, data_args.resize_h, data_args.resize_w] if 'coco' in data_args.dataset: num_classes = 91 # cocoapi from pycocotools.coco import COCO from pycocotools.cocoeval import COCOeval label_fpath = os.path.join(data_dir, label_file) coco = COCO(label_fpath) category_ids = coco.getCatIds() label_list = { item['id']: item['name'] for item in coco.loadCats(category_ids) } label_list[0] = ['background'] elif 'pascalvoc' in data_args.dataset: num_classes = 21 label_list = data_args.label_list image = fluid.layers.data(name='image', shape=image_shape, dtype='float32') locs, confs, box, box_var = mobile_net(num_classes, image, image_shape) nmsed_out = fluid.layers.detection_output( locs, confs, box, box_var, nms_threshold=args.nms_threshold) place = fluid.CUDAPlace(0) if args.use_gpu else fluid.CPUPlace() exe = fluid.Executor(place) # yapf: disable if model_dir: def if_exist(var): return os.path.exists(os.path.join(model_dir, var.name)) fluid.io.load_vars(exe, model_dir, predicate=if_exist) # yapf: enable infer_reader = reader.infer(data_args, image_path) feeder = fluid.DataFeeder(place=place, feed_list=[image]) data = infer_reader() # switch network to test mode (i.e. batch norm test mode) test_program = fluid.default_main_program().clone(for_test=True) nmsed_out_v, = exe.run(test_program, feed=feeder.feed([[data]]), fetch_list=[nmsed_out], return_numpy=False) nmsed_out_v = np.array(nmsed_out_v) draw_bounding_box_on_image(image_path, nmsed_out_v, args.confs_threshold, label_list) def draw_bounding_box_on_image(image_path, nms_out, confs_threshold, label_list): image = Image.open(image_path) draw = ImageDraw.Draw(image) im_width, im_height = image.size for dt in nms_out: if dt[1] < confs_threshold: continue category_id = dt[0] bbox = dt[2:] xmin, ymin, xmax, ymax = clip_bbox(dt[2:]) (left, right, top, bottom) = (xmin * im_width, xmax * im_width, ymin * im_height, ymax * im_height) draw.line( [(left, top), (left, bottom), (right, bottom), (right, top), (left, top)], width=4, fill='red') if image.mode == 'RGB': draw.text((left, top), label_list[int(category_id)], (255, 255, 0)) image_name = image_path.split('/')[-1] print("image with bbox drawed saved as {}".format(image_name)) image.save(image_name) def clip_bbox(bbox): xmin = max(min(bbox[0], 1.), 0.) ymin = max(min(bbox[1], 1.), 0.) xmax = max(min(bbox[2], 1.), 0.) ymax = max(min(bbox[3], 1.), 0.) return xmin, ymin, xmax, ymax if __name__ == '__main__': args = parser.parse_args() print_arguments(args) data_dir = 'data/pascalvoc' label_file = 'label_list' if not os.path.exists(args.model_dir): raise ValueError("The model path [%s] does not exist." % (args.model_dir)) if 'coco' in args.dataset: data_dir = 'data/coco' label_file = 'annotations/instances_val2014.json' data_args = reader.Settings( dataset=args.dataset, data_dir=data_dir, label_file=label_file, resize_h=args.resize_h, resize_w=args.resize_w, mean_value=[args.mean_value_B, args.mean_value_G, args.mean_value_R], apply_distort=False, apply_expand=False, ap_version='') infer( args, data_args=data_args, image_path=args.image_path, model_dir=args.model_dir)