# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import math import numpy as np import paddle import paddle.fluid as fluid from paddle.fluid.layers.learning_rate_scheduler import _decay_step_counter import reader from absl import flags # import preprocess FLAGS = flags.FLAGS flags.DEFINE_float("lr_max", 0.1, "initial learning rate") flags.DEFINE_float("lr_min", 0.0001, "limiting learning rate") flags.DEFINE_integer("batch_size", 128, "batch size") flags.DEFINE_integer("num_epochs", 200, "total epochs to train") flags.DEFINE_float("weight_decay", 0.0004, "weight decay") flags.DEFINE_float("momentum", 0.9, "momentum") flags.DEFINE_boolean("shuffle_image", True, "shuffle input images on training") dataset_train_size = 50000 class Model(object): def __init__(self, build_fn, tokens): print("learning rate: %f -> %f, cosine annealing" % (FLAGS.lr_max, FLAGS.lr_min)) print("epoch: %d" % FLAGS.num_epochs) print("batch size: %d" % FLAGS.batch_size) print("L2 decay: %f" % FLAGS.weight_decay) self.max_step = dataset_train_size * FLAGS.num_epochs // FLAGS.batch_size self.build_fn = build_fn self.tokens = tokens print("Token is %s" % ",".join(map(str, tokens))) def cosine_annealing(self): step = _decay_step_counter() lr = FLAGS.lr_min + (FLAGS.lr_max - FLAGS.lr_min) / 2 \ * (1.0 + fluid.layers.ops.cos(step / self.max_step * math.pi)) return lr def optimizer_program(self): return fluid.optimizer.Momentum( learning_rate=self.cosine_annealing(), momentum=FLAGS.momentum, use_nesterov=True, regularization=fluid.regularizer.L2DecayRegularizer( FLAGS.weight_decay)) def inference_network(self): images = fluid.layers.data( name='pixel', shape=[3, 32, 32], dtype='float32') return self.build_fn(images, self.tokens) def train_network(self): predict = self.inference_network() label = fluid.layers.data(name='label', shape=[1], dtype='int64') cost = fluid.layers.cross_entropy(input=predict, label=label) avg_cost = fluid.layers.mean(cost) accuracy = fluid.layers.accuracy(input=predict, label=label) # self.parameters = fluid.parameters.create(avg_cost) return [avg_cost, accuracy] def run(self): train_files = reader.train10() test_files = reader.test10() if FLAGS.shuffle_image: train_reader = paddle.batch( paddle.reader.shuffle(train_files, dataset_train_size), batch_size=FLAGS.batch_size) else: train_reader = paddle.batch( train_files, batch_size=FLAGS.batch_size) test_reader = paddle.batch(test_files, batch_size=FLAGS.batch_size) costs = [] accs = [] def event_handler(event): if isinstance(event, fluid.EndStepEvent): costs.append(event.metrics[0]) accs.append(event.metrics[1]) if event.step % 20 == 0: print("Epoch %d, Step %d, Loss %f, Acc %f" % ( event.epoch, event.step, np.mean(costs), np.mean(accs))) del costs[:] del accs[:] if isinstance(event, fluid.EndEpochEvent): if event.epoch % 3 == 0 or event.epoch == FLAGS.num_epochs - 1: avg_cost, accuracy = trainer.test( reader=test_reader, feed_order=['pixel', 'label']) event_handler.best_acc = max(event_handler.best_acc, accuracy) print("Test with epoch %d, Loss %f, Acc %f" % (event.epoch, avg_cost, accuracy)) print("Best acc %f" % event_handler.best_acc) event_handler.best_acc = 0.0 place = fluid.CUDAPlace(0) trainer = fluid.Trainer( train_func=self.train_network, optimizer_func=self.optimizer_program, place=place) trainer.train( reader=train_reader, num_epochs=FLAGS.num_epochs, event_handler=event_handler, feed_order=['pixel', 'label'])