# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import build.layers as layers def conv_1x1(inputs, downsample=False): return conv_base(inputs, (1, 1), downsample=downsample) def conv_2x2(inputs, downsample=False): return conv_base(inputs, (2, 2), downsample=downsample) def conv_3x3(inputs, downsample=False): return conv_base(inputs, (3, 3), downsample=downsample) def dilated_2x2(inputs, downsample=False): return conv_base(inputs, (2, 2), (2, 2), downsample) def conv_1x2_2x1(inputs, downsample=False): return pair_base(inputs, 2, downsample) def conv_1x3_3x1(inputs, downsample=False): return pair_base(inputs, 3, downsample) def sep_2x2(inputs, downsample=False): return sep_base(inputs, (2, 2), downsample=downsample) def sep_3x3(inputs, downsample=False): return sep_base(inputs, (3, 3), downsample=downsample) def maxpool_2x2(inputs, downsample=False): return maxpool_base(inputs, (2, 2), downsample) def maxpool_3x3(inputs, downsample=False): return maxpool_base(inputs, (3, 3), downsample) def avgpool_2x2(inputs, downsample=False): return avgpool_base(inputs, (2, 2), downsample) def avgpool_3x3(inputs, downsample=False): return avgpool_base(inputs, (3, 3), downsample) def conv_base(inputs, kernel, dilation=(1, 1), downsample=False): filters = inputs.shape[1] if downsample: output = layers.conv(inputs, filters * 2, kernel, (2, 2)) else: output = layers.conv(inputs, filters, kernel, dilation=dilation) return output def pair_base(inputs, kernel, downsample=False): filters = inputs.shape[1] if downsample: output = layers.conv(inputs, filters, (1, kernel), (1, 2)) output = layers.conv(output, filters, (kernel, 1), (2, 1)) output = layers.conv(output, filters * 2, (1, 1)) else: output = layers.conv(inputs, filters, (1, kernel)) output = layers.conv(output, filters, (kernel, 1)) return output def sep_base(inputs, kernel, dilation=(1, 1), downsample=False): filters = inputs.shape[1] if downsample: output = layers.sep(inputs, filters * 2, kernel, (2, 2)) else: output = layers.sep(inputs, filters, kernel, dilation=dilation) return output def maxpool_base(inputs, kernel, downsample=False): if downsample: filters = inputs.shape[1] output = layers.maxpool(inputs, kernel, (2, 2)) output = layers.conv(output, filters * 2, (1, 1)) else: output = layers.maxpool(inputs, kernel) return output def avgpool_base(inputs, kernel, downsample=False): if downsample: filters = inputs.shape[1] output = layers.avgpool(inputs, kernel, (2, 2)) output = layers.conv(output, filters * 2, (1, 1)) else: output = layers.avgpool(inputs, kernel) return output