# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Evaluator for ICNet model.""" import paddle.fluid as fluid import numpy as np from utils import add_arguments, print_arguments, get_feeder_data, check_gpu from paddle.fluid.layers.learning_rate_scheduler import _decay_step_counter from paddle.fluid.initializer import init_on_cpu from icnet import icnet import cityscape import argparse import functools import sys import os parser = argparse.ArgumentParser(description=__doc__) add_arg = functools.partial(add_arguments, argparser=parser) # yapf: disable add_arg('model_path', str, None, "Model path.") add_arg('use_gpu', bool, True, "Whether use GPU to test.") # yapf: enable def cal_mean_iou(wrong, correct): sum = wrong + correct true_num = (sum != 0).sum() for i in range(len(sum)): if sum[i] == 0: sum[i] = 1 return (correct.astype("float64") / sum).sum() / true_num def create_iou(predict, label, mask, num_classes, image_shape): predict = fluid.layers.resize_bilinear(predict, out_shape=image_shape[1:3]) predict = fluid.layers.transpose(predict, perm=[0, 2, 3, 1]) predict = fluid.layers.reshape(predict, shape=[-1, num_classes]) label = fluid.layers.reshape(label, shape=[-1, 1]) _, predict = fluid.layers.topk(predict, k=1) predict = fluid.layers.cast(predict, dtype="float32") predict = fluid.layers.gather(predict, mask) label = fluid.layers.gather(label, mask) label = fluid.layers.cast(label, dtype="int32") predict = fluid.layers.cast(predict, dtype="int32") iou, out_w, out_r = fluid.layers.mean_iou(predict, label, num_classes) return iou, out_w, out_r def eval(args): data_shape = cityscape.test_data_shape() num_classes = cityscape.num_classes() # define network images = fluid.layers.data(name='image', shape=data_shape, dtype='float32') label = fluid.layers.data(name='label', shape=[1], dtype='int32') mask = fluid.layers.data(name='mask', shape=[-1], dtype='int32') _, _, sub124_out = icnet(images, num_classes, np.array(data_shape[1:]).astype("float32")) iou, out_w, out_r = create_iou(sub124_out, label, mask, num_classes, data_shape) inference_program = fluid.default_main_program().clone(for_test=True) # prepare environment place = fluid.CPUPlace() if args.use_gpu: place = fluid.CUDAPlace(0) exe = fluid.Executor(place) exe.run(fluid.default_startup_program()) assert os.path.exists(args.model_path) fluid.io.load_params(exe, args.model_path) print("loaded model from: %s" % args.model_path) sys.stdout.flush() fetch_vars = [iou, out_w, out_r] out_wrong = np.zeros([num_classes]).astype("int64") out_right = np.zeros([num_classes]).astype("int64") count = 0 test_reader = cityscape.test() for data in test_reader(): count += 1 result = exe.run(inference_program, feed=get_feeder_data( data, place, for_test=True), fetch_list=fetch_vars) out_wrong += result[1] out_right += result[2] sys.stdout.flush() iou = cal_mean_iou(out_wrong, out_right) print("\nmean iou: %.3f" % iou) print("kpis test_acc %f" % iou) def main(): args = parser.parse_args() print_arguments(args) check_gpu(args.use_gpu) eval(args) if __name__ == "__main__": main()