# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import math import random import functools import numpy as np import paddle import cv2 import io random.seed(0) np.random.seed(0) THREAD = 8 BUF_SIZE = 128 img_mean = np.array([0.485, 0.456, 0.406]).reshape((3, 1, 1)) img_std = np.array([0.229, 0.224, 0.225]).reshape((3, 1, 1)) def rotate_image(img): """ rotate_image """ (h, w) = img.shape[:2] center = (w / 2, h / 2) angle = np.random.randint(-10, 11) M = cv2.getRotationMatrix2D(center, angle, 1.0) rotated = cv2.warpAffine(img, M, (w, h)) return rotated def random_crop(img, size, scale=None, ratio=None): """ random_crop """ scale = [0.08, 1.0] if scale is None else scale ratio = [3. / 4., 4. / 3.] if ratio is None else ratio aspect_ratio = math.sqrt(np.random.uniform(*ratio)) w = 1. * aspect_ratio h = 1. / aspect_ratio bound = min((float(img.shape[1]) / img.shape[0]) / (w ** 2), (float(img.shape[0]) / img.shape[1]) / (h ** 2)) scale_max = min(scale[1], bound) scale_min = min(scale[0], bound) target_area = img.shape[0] * img.shape[1] * np.random.uniform(scale_min, scale_max) target_size = math.sqrt(target_area) w = int(target_size * w) h = int(target_size * h) i = np.random.randint(0, img.size[0] - w + 1) j = np.random.randint(0, img.size[1] - h + 1) img = img[i:i+h, j:j+w, :] resized = cv2.resize(img, (size, size), interpolation=cv2.INTER_CUBIC ) return resized def distort_color(img): return img def resize_short(img, target_size): """ resize_short """ percent = float(target_size) / min(img.shape[0], img.shape[1]) resized_width = int(round(img.shape[1] * percent)) resized_height = int(round(img.shape[0] * percent)) resized = cv2.resize(img, (resized_width, resized_height), interpolation=cv2.INTER_CUBIC ) return resized def crop_image(img, target_size, center): """ crop_image """ height, width = img.shape[:2] size = target_size if center == True: w_start = (width - size) / 2 h_start = (height - size) / 2 else: w_start = np.random.randint(0, width - size + 1) h_start = np.random.randint(0, height - size + 1) w_end = w_start + size h_end = h_start + size img = img[h_start:h_end, w_start:w_end, :] return img def process_image(sample, mode, color_jitter, rotate, crop_size=224, mean=None, std=None): """ process_image """ mean = [0.485, 0.456, 0.406] if mean is None else mean std = [0.229, 0.224, 0.225] if std is None else std img_path = sample[0] img = cv2.imread(img_path) img = cv2.resize(img, (crop_size, crop_size)) img = img[:, :, ::-1].astype('float32').transpose((2, 0, 1)) / 255 img_mean = np.array(mean).reshape((3, 1, 1)) img_std = np.array(std).reshape((3, 1, 1)) img -= img_mean img /= img_std return (img, ) def image_mapper(**kwargs): """ image_mapper """ return functools.partial(process_image, **kwargs) def _reader_creator(file_list, mode, shuffle=False, color_jitter=False, rotate=False, data_dir=None, crop_size=224): def reader(): with open(file_list) as flist: full_lines = [line.strip() for line in flist] if shuffle: np.random.shuffle(lines) lines = full_lines for line in lines: img_path, label = line.strip().split() img_path = os.path.join(data_dir, img_path) yield [img_path] image_mapper = functools.partial(process_image, mode=mode, color_jitter=color_jitter, rotate=rotate, crop_size=crop_size) reader = paddle.reader.xmap_readers( image_mapper, reader, THREAD, BUF_SIZE, order=True) return reader def create_img_reader(args): def reader(): img_path = args.img_path yield [img_path] return reader def test(settings, crop_size): file_list = settings.img_list data_dir = settings.img_path return _reader_creator(file_list, 'test', shuffle=False, data_dir=data_dir, crop_size=crop_size)