### Caffe2Fluid This tool is used to convert a Caffe model to a Fluid model ### Key Features 1. Convert caffe model to fluid model with codes of defining a network(useful for re-training) 2. Pycaffe is not necessary when just want convert model without do caffe-inference 3. Caffe's customized layers convertion also be supported by extending this tool 4. A bunch of tools in `examples/imagenet/tools` are provided to compare the difference ### HowTo 1. Prepare `caffepb.py` in `./proto` if your python has no `pycaffe` module, two options provided here: - Generate pycaffe from caffe.proto ``` bash ./proto/compile.sh ``` - Download one from github directly ``` cd proto/ && wget https://github.com/ethereon/caffe-tensorflow/blob/master/kaffe/caffe/caffepb.py ``` 2. Convert the Caffe model to Fluid model - Generate fluid code and weight file ``` python convert.py alexnet.prototxt \ --caffemodel alexnet.caffemodel \ --data-output-path alexnet.npy \ --code-output-path alexnet.py ``` - Save weights as fluid model file ``` # only infer the last layer's result python alexnet.py alexnet.npy ./fluid # infer these 2 layer's result python alexnet.py alexnet.npy ./fluid fc8,prob ``` 3. Use the converted model to infer - See more details in `examples/imagenet/tools/run.sh` 4. Compare the inference results with caffe - See more details in `examples/imagenet/tools/diff.sh` ### How to convert custom layer 1. Implement your custom layer in a file under `kaffe/custom_layers`, eg: mylayer.py - Implement ```shape_func(input_shape, [other_caffe_params])``` to calculate the output shape - Implement ```layer_func(inputs, name, [other_caffe_params])``` to construct a fluid layer - Register these two functions ```register(kind='MyType', shape=shape_func, layer=layer_func)``` - Notes: more examples can be found in `kaffe/custom_layers` 2. Add ```import mylayer``` to `kaffe/custom_layers/\_\_init__.py` 3. Prepare your pycaffe as your customized version(same as previous env prepare) - (option1) replace `proto/caffe.proto` with your own caffe.proto and compile it - (option2) change your `pycaffe` to the customized version 4. Convert the Caffe model to Fluid model 5. Set env $CAFFE2FLUID_CUSTOM_LAYERS to the parent directory of 'custom_layers' ``` export CAFFE2FLUID_CUSTOM_LAYERS=/path/to/caffe2fluid/kaffe ``` 6. Use the converted model when loading model in `xxxnet.py` and `xxxnet.npy`(no need if model is already in `fluid/model` and `fluid/params`) ### Tested models - Lenet: [model addr](https://github.com/ethereon/caffe-tensorflow/blob/master/examples/mnist) - ResNets:(ResNet-50, ResNet-101, ResNet-152) [model addr](https://onedrive.live.com/?authkey=%21AAFW2-FVoxeVRck&id=4006CBB8476FF777%2117887&cid=4006CBB8476FF777) - GoogleNet: [model addr](https://gist.github.com/jimmie33/7ea9f8ac0da259866b854460f4526034) - VGG: [model addr](https://gist.github.com/ksimonyan/211839e770f7b538e2d8) - AlexNet: [model addr](https://github.com/BVLC/caffe/tree/master/models/bvlc_alexnet) ### Notes Some of this code come from here: [caffe-tensorflow](https://github.com/ethereon/caffe-tensorflow)