#Hyperparameters config #Example: SE_ResNext50_32x4d python train.py \ --model=SE_ResNeXt50_32x4d \ --batch_size=400 \ --total_images=1281167 \ --class_dim=1000 \ --image_shape=3,224,224 \ --model_save_dir=output/ \ --with_mem_opt=True \ --lr_strategy=cosine_decay \ --lr=0.1 \ --num_epochs=200 \ --l2_decay=1.2e-4 \ # >log_SE_ResNeXt50_32x4d.txt 2>&1 & #AlexNet: #python train.py \ # --model=AlexNet \ # --batch_size=256 \ # --total_images=1281167 \ # --class_dim=1000 \ # --image_shape=3,224,224 \ # --model_save_dir=output/ \ # --with_mem_opt=True \ # --lr_strategy=piecewise_decay \ # --num_epochs=120 \ # --lr=0.01 \ # --l2_decay=1e-4 #MobileNet v1: #python train.py \ # --model=MobileNet \ # --batch_size=256 \ # --total_images=1281167 \ # --class_dim=1000 \ # --image_shape=3,224,224 \ # --model_save_dir=output/ \ # --with_mem_opt=True \ # --lr_strategy=piecewise_decay \ # --num_epochs=120 \ # --lr=0.1 \ # --l2_decay=3e-5 #python train.py \ # --model=MobileNetV2 \ # --batch_size=500 \ # --total_images=1281167 \ # --class_dim=1000 \ # --image_shape=3,224,224 \ # --model_save_dir=output/ \ # --with_mem_opt=True \ # --lr_strategy=cosine_decay \ # --num_epochs=240 \ # --lr=0.1 \ # --l2_decay=4e-5 #ResNet18: #python train.py \ # --model=ResNet18 \ # --batch_size=256 \ # --total_images=1281167 \ # --class_dim=1000 \ # --image_shape=3,224,224 \ # --model_save_dir=output/ \ # --with_mem_opt=True \ # --lr_strategy=cosine_decay \ # --lr=0.1 \ # --num_epochs=120 \ # --l2_decay=1e-4 #ResNet34: #python train.py \ # --model=ResNet34 \ # --batch_size=256 \ # --total_images=1281167 \ # --class_dim=1000 \ # --image_shape=3,224,224 \ # --model_save_dir=output/ \ # --with_mem_opt=True \ # --lr_strategy=cosine_decay \ # --lr=0.1 \ # --num_epochs=120 \ # --l2_decay=1e-4 #ShuffleNetv2: #python train.py \ # --model=ShuffleNetV2 \ # --batch_size=1024 \ # --total_images=1281167 \ # --class_dim=1000 \ # --image_shape=3,224,224 \ # --model_save_dir=output/ \ # --with_mem_opt=True \ # --lr_strategy=cosine_decay_with_warmup \ # --lr=0.5 \ # --num_epochs=240 \ # --l2_decay=4e-5 #GoogleNet: #python train.py \ # --model=GoogleNet \ # --batch_size=256 \ # --total_images=1281167 \ # --class_dim=1000 \ # --image_shape=3,224,224 \ # --model_save_dir=output/ \ # --with_mem_opt=True \ # --lr_strategy=cosine_decay \ # --lr=0.01 \ # --num_epochs=200 \ # --l2_decay=1e-4 #ResNet50: #python train.py \ # --model=ResNet50 \ # --batch_size=256 \ # --total_images=1281167 \ # --class_dim=1000 \ # --image_shape=3,224,224 \ # --model_save_dir=output/ \ # --with_mem_opt=True \ # --lr_strategy=piecewise_decay \ # --num_epochs=120 \ # --lr=0.1 \ # --l2_decay=1e-4 #ResNet101: #python train.py \ # --model=ResNet101 \ # --batch_size=256 \ # --total_images=1281167 \ # --class_dim=1000 \ # --image_shape=3,224,224 \ # --model_save_dir=output/ \ # --with_mem_opt=True \ # --lr_strategy=piecewise_decay \ # --num_epochs=120 \ # --lr=0.1 \ # --l2_decay=1e-4 #ResNet152: #python train.py \ # --model=ResNet152 \ # --batch_size=256 \ # --total_images=1281167 \ # --class_dim=1000 \ # --image_shape=3,224,224 \ # --model_save_dir=output/ \ # --lr_strategy=piecewise_decay \ # --with_mem_opt=True \ # --lr=0.1 \ # --num_epochs=120 \ # --l2_decay=1e-4 #SE_ResNeXt50_32x4d: #python train.py \ # --model=SE_ResNeXt50_32x4d \ # --batch_size=400 \ # --total_images=1281167 \ # --class_dim=1000 \ # --image_shape=3,224,224 \ # --lr_strategy=cosine_decay \ # --model_save_dir=output/ \ # --lr=0.1 \ # --num_epochs=200 \ # --with_mem_opt=True \ # --l2_decay=1.2e-4 #SE_ResNeXt101_32x4d: #python train.py \ # --model=SE_ResNeXt101_32x4d \ # --batch_size=400 \ # --total_images=1281167 \ # --class_dim=1000 \ # --image_shape=3,224,224 \ # --lr_strategy=cosine_decay \ # --model_save_dir=output/ \ # --lr=0.1 \ # --num_epochs=200 \ # --with_mem_opt=True \ # --l2_decay=1.5e-5 #VGG11: #python train.py \ # --model=VGG11 \ # --batch_size=512 \ # --total_images=1281167 \ # --image_shape=3,224,224 \ # --lr_strategy=cosine_decay \ # --class_dim=1000 \ # --model_save_dir=output/ \ # --lr=0.1 \ # --num_epochs=90 \ # --with_mem_opt=True \ # --l2_decay=2e-4 #VGG13: #python train.py # --model=VGG13 \ # --batch_size=256 \ # --total_images=1281167 \ # --class_dim=1000 \ # --image_shape=3,224,224 \ # --lr_strategy=cosine_decay \ # --lr=0.01 \ # --num_epochs=90 \ # --model_save_dir=output/ \ # --with_mem_opt=True \ # --l2_decay=3e-4 #VGG16: #python train.py # --model=VGG16 \ # --batch_size=256 \ # --total_images=1281167 \ # --class_dim=1000 \ # --lr_strategy=cosine_decay \ # --image_shape=3,224,224 \ # --model_save_dir=output/ \ # --lr=0.01 \ # --num_epochs=90 \ # --with_mem_opt=True \ # --l2_decay=3e-4 #VGG19: #python train.py # --model=VGG19 \ # --batch_size=256 \ # --total_images=1281167 \ # --class_dim=1000 \ # --image_shape=3,224,224 \ # --lr_strategy=cosine_decay \ # --lr=0.01 \ # --num_epochs=90 \ # --with_mem_opt=True \ # --model_save_dir=output/ \ # --l2_decay=3e-4 #ResNet50 nGraph: # Training: #OMP_NUM_THREADS=`nproc` FLAGS_use_ngraph=true python train.py \ # --model=ResNet50 \ # --batch_size=128 \ # --total_images=1281167 \ # --class_dim=1000 \ # --image_shape=3,224,224 \ # --lr=0.001 \ # --num_epochs=120 \ # --with_mem_opt=False \ # --model_save_dir=output/ \ # --lr_strategy=adam \ # --use_gpu=False # Inference: #OMP_NUM_THREADS=`nproc` FLAGS_use_ngraph=true python infer.py \ # --use_gpu=false \ # --model=ResNet50 \ # --pretrained_model=ResNet50_pretrained