from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import numpy as np import time import sys import paddle import paddle.fluid as fluid import reader import argparse import functools import models import utils from utils.utility import add_arguments,print_arguments import math parser = argparse.ArgumentParser(description=__doc__) # yapf: disable add_arg = functools.partial(add_arguments, argparser=parser) add_arg('use_gpu', bool, True, "Whether to use GPU or not.") add_arg('class_dim', int, 1000, "Class number.") add_arg('image_shape', str, "3,224,224", "Input image size") add_arg('with_mem_opt', bool, True, "Whether to use memory optimization or not.") add_arg('pretrained_model', str, None, "Whether to use pretrained model.") add_arg('model', str, "SE_ResNeXt50_32x4d", "Set the network to use.") add_arg('save_inference', bool, False, "Whether to save inference model or not") # yapf: enable def infer(args): # parameters from arguments class_dim = args.class_dim model_name = args.model save_inference = args.save_inference pretrained_model = args.pretrained_model with_memory_optimization = args.with_mem_opt image_shape = [int(m) for m in args.image_shape.split(",")] model_list = [m for m in dir(models) if "__" not in m] assert model_name in model_list, "{} is not in lists: {}".format(args.model, model_list) image = fluid.layers.data(name='image', shape=image_shape, dtype='float32') # model definition model = models.__dict__[model_name]() if model_name == "GoogleNet": out, _, _ = model.net(input=image, class_dim=class_dim) else: out = model.net(input=image, class_dim=class_dim) test_program = fluid.default_main_program().clone(for_test=True) fetch_list = [out.name] if with_memory_optimization and not save_inference: fluid.memory_optimize( fluid.default_main_program(), skip_opt_set=set(fetch_list)) place = fluid.CUDAPlace(0) if args.use_gpu else fluid.CPUPlace() exe = fluid.Executor(place) exe.run(fluid.default_startup_program()) if pretrained_model: def if_exist(var): return os.path.exists(os.path.join(pretrained_model, var.name)) fluid.io.load_vars(exe, pretrained_model, predicate=if_exist) if save_inference: fluid.io.save_inference_model( dirname=model_name, feeded_var_names=['image'], main_program=test_program, target_vars=out, executor=exe, model_filename='model', params_filename='params') print("model: ",model_name," is already saved") exit(0) test_batch_size = 1 test_reader = paddle.batch(reader.test(), batch_size=test_batch_size) feeder = fluid.DataFeeder(place=place, feed_list=[image]) TOPK = 1 for batch_id, data in enumerate(test_reader()): result = exe.run(test_program, fetch_list=fetch_list, feed=feeder.feed(data)) result = result[0][0] pred_label = np.argsort(result)[::-1][:TOPK] print("Test-{0}-score: {1}, class {2}" .format(batch_id, result[pred_label], pred_label)) sys.stdout.flush() def main(): args = parser.parse_args() print_arguments(args) infer(args) if __name__ == '__main__': main()