import paddle.v2 as paddle import data_provider import vgg_ssd_net import os, sys import gzip import tarfile from config.pascal_voc_conf import cfg def train(train_file_list, dev_file_list, data_args, init_model_path): optimizer = paddle.optimizer.Momentum( momentum=cfg.TRAIN.MOMENTUM, learning_rate=cfg.TRAIN.LEARNING_RATE, regularization=paddle.optimizer.L2Regularization( rate=cfg.TRAIN.L2REGULARIZATION), learning_rate_decay_a=cfg.TRAIN.LEARNING_RATE_DECAY_A, learning_rate_decay_b=cfg.TRAIN.LEARNING_RATE_DECAY_B, learning_rate_schedule=cfg.TRAIN.LEARNING_RATE_SCHEDULE) cost, detect_out = vgg_ssd_net.net_conf('train') parameters = paddle.parameters.create(cost) if not (init_model_path is None): assert os.path.isfile(init_model_path), 'Invalid model.' parameters.init_from_tar(gzip.open(init_model_path)) trainer = paddle.trainer.SGD(cost=cost, parameters=parameters, extra_layers=[detect_out], update_equation=optimizer) feeding = {'image': 0, 'bbox': 1} train_reader = paddle.batch( data_provider.train(data_args, train_file_list), batch_size=cfg.TRAIN.BATCH_SIZE) # generate a batch image each time dev_reader = paddle.batch( data_provider.test(data_args, dev_file_list), batch_size=cfg.TRAIN.BATCH_SIZE) def event_handler(event): if isinstance(event, paddle.event.EndIteration): if event.batch_id % 1 == 0: print "\nPass %d, Batch %d, TrainCost %f, Detection mAP=%f" % \ (event.pass_id, event.batch_id, event.cost, event.metrics['detection_evaluator']) else: sys.stdout.write('.') sys.stdout.flush() if isinstance(event, paddle.event.EndPass): with gzip.open('checkpoints/params_pass_%05d.tar.gz' % \ event.pass_id, 'w') as f: trainer.save_parameter_to_tar(f) result = trainer.test(reader=dev_reader, feeding=feeding) print "\nTest with Pass %d, TestCost: %f, Detection mAP=%g" % \ (event.pass_id, result.cost, result.metrics['detection_evaluator']) trainer.train( reader=train_reader, event_handler=event_handler, num_passes=cfg.TRAIN.NUM_PASS, feeding=feeding) if __name__ == "__main__": paddle.init(use_gpu=True, trainer_count=4) data_args = data_provider.Settings( data_dir='./data', label_file='label_list', resize_h=cfg.IMG_HEIGHT, resize_w=cfg.IMG_WIDTH, mean_value=[104, 117, 124]) train( train_file_list='./data/trainval.txt', dev_file_list='./data/test.txt', data_args=data_args, init_model_path='./vgg/vgg_model.tar.gz')