#!/usr/bin/env python # -*- coding: utf-8 -*- """Some utilities for MRC online service""" import json import sys import logging import time import numpy as np from flask import Response from flask import request from copy import deepcopy verbose = False def _request_check(input_json): """Check if the request json is valid""" if input_json is None or not isinstance(input_json, dict): return 'Can not parse the input json data - {}'.format(input_json) try: c = input_json['context'] qa = input_json['qas'][0] qid = qa['qid'] q = qa['question'] except KeyError as e: return 'Invalid request, key "{}" not found'.format(e) return 'OK' def _abort(status_code, message): """Create custom error message and status code""" return Response(json.dumps(message), status=status_code, mimetype='application/json') def _timmer(init_start, start, current, process_name): cumulated_elapsed_time = (current - init_start) * 1000 current_elapsed_time = (current - start) * 1000 print('{}\t-\t{:.2f}\t{:.2f}'.format(process_name, cumulated_elapsed_time, current_elapsed_time)) def _split_input_json(input_json): if len(input_json['context_tokens']) > 810: input_json['context'] = input_json['context'][:5000] if len(input_json['qas']) == 1: return [input_json] else: rets = [] for i in range(len(input_json['qas'])): temp = deepcopy(input_json) temp['qas'] = [input_json['qas'][i]] rets.append(temp) return rets class MRQAService(object): """Provide basic MRC service for flask""" def __init__(self, name, logger=None, log_data=False): """ """ self.name = name if logger is None: self.logger = logging.getLogger('flask') else: self.logger = logger self.log_data = log_data def __call__(self, model, process_mode='serial', max_batch_size=5, timmer=False): """ Args: mode: serial, parallel """ if timmer: start = time.time() """Call mrc model wrapper and handle expectations""" self.input_json = request.get_json(silent=True) try: if timmer: start_request_check = time.time() request_status = _request_check(self.input_json) if timmer: current_time = time.time() _timmer(start, start_request_check, current_time, 'request check') if self.log_data: if self.logger is None: logging.info( 'Client input - {}'.format(json.dumps(self.input_json, ensure_ascii=False)) ) else: self.logger.info( 'Client input - {}'.format(json.dumps(self.input_json, ensure_ascii=False)) ) except Exception as e: self.logger.error('server request checker error') self.logger.exception(e) return _abort(500, 'server request checker error - {}'.format(e)) if request_status != 'OK': return _abort(400, request_status) # call preprocessor try: if timmer: start_preprocess = time.time() jsons = _split_input_json(self.input_json) processed = [] ex_start_idx = 0 feat_start_idx = 1000000000 for i in jsons: e,f,b = model.preprocessor(i, batch_size=max_batch_size if process_mode == 'parallel' else 1, examples_start_id=ex_start_idx, features_start_id=feat_start_idx) ex_start_idx += len(e) feat_start_idx += len(f) processed.append([e,f,b]) if timmer: current_time = time.time() _timmer(start, start_preprocess, current_time, 'preprocess') except Exception as e: self.logger.error('preprocessor error') self.logger.exception(e) return _abort(500, 'preprocessor error - {}'.format(e)) def transpose(mat): return zip(*mat) # call mrc try: if timmer: start_call_mrc = time.time() self.mrc_results = [] self.examples = [] self.features = [] for e, f, batches in processed: if verbose: if len(f) > max_batch_size: print("get a too long example....") if process_mode == 'serial': self.mrc_results.extend([model.call_mrc(b, squeeze_dim0=True) for b in batches[:max_batch_size]]) elif process_mode == 'parallel': # only keep first max_batch_size features # batches = batches[0] for b in batches: self.mrc_results.extend(model.call_mrc(b, return_list=True)) else: raise NotImplementedError() self.examples.extend(e) # self.features.extend(f[:max_batch_size]) self.features.extend(f) if timmer: current_time = time.time() _timmer(start, start_call_mrc, current_time, 'call mrc') except Exception as e: self.logger.error('call_mrc error') self.logger.exception(e) return _abort(500, 'call_mrc error - {}'.format(e)) # call post processor try: if timmer: start_post_precess = time.time() self.results = model.postprocessor(self.examples, self.features, self.mrc_results) # only nbest results is POSTed back self.results = self.results[1] # self.results = self.results[0] if timmer: current_time = time.time() _timmer(start, start_post_precess, current_time, 'post process') except Exception as e: self.logger.error('postprocessor error') self.logger.exception(e) return _abort(500, 'postprocessor error - {}'.format(e)) return self._response_constructor() def _response_constructor(self): """construct http response object""" try: response = { # 'requestID': self.input_json['requestID'], 'results': self.results } if self.log_data: self.logger.info( 'Response - {}'.format(json.dumps(response, ensure_ascii=False)) ) return Response(json.dumps(response), mimetype='application/json') except Exception as e: self.logger.error('response constructor error') self.logger.exception(e) return _abort(500, 'response constructor error - {}'.format(e))