#!/usr/bin/env python # -*- coding: utf-8 -*- ################################################################################ # Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ################################################################################ import os import argparse from mmpms.inputters.dataset import PostResponseDataset parser = argparse.ArgumentParser() parser.add_argument("--data_dir", type=str, default="./data/") parser.add_argument( "--embed_file", type=str, default="./data/glove.840B.300d.txt") parser.add_argument("--max_vocab_size", type=int, default=30000) parser.add_argument("--min_len", type=int, default=3) parser.add_argument("--max_len", type=int, default=30) args = parser.parse_args() vocab_file = os.path.join(args.data_dir, "vocab.json") raw_train_file = os.path.join(args.data_dir, "dial.train") raw_valid_file = os.path.join(args.data_dir, "dial.valid") raw_test_file = os.path.join(args.data_dir, "dial.test") train_file = raw_train_file + ".pkl" valid_file = raw_valid_file + ".pkl" test_file = raw_test_file + ".pkl" dataset = PostResponseDataset( max_vocab_size=args.max_vocab_size, min_len=args.min_len, max_len=args.max_len, embed_file=args.embed_file) # Build vocabulary dataset.build_vocab(raw_train_file) dataset.save_vocab(vocab_file) # Build examples valid_examples = dataset.build_examples(raw_valid_file) dataset.save_examples(valid_examples, valid_file) test_examples = dataset.build_examples(raw_test_file) dataset.save_examples(test_examples, test_file) train_examples = dataset.build_examples(raw_train_file) dataset.save_examples(train_examples, train_file)