# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import sys import logging import argparse from text_encoder import SubwordTextEncoder from text_encoder import EOS_ID def get_or_generate_vocab(data_dir, tmp_dir, vocab_filename, vocab_size, sources, file_byte_budget=1e6): """Generate a vocabulary from the datasets in sources.""" def generate(): """Generate lines for vocabulary generation.""" logging.info("Generating vocab from: %s", str(sources)) for source in sources: for lang_file in source[1]: logging.info("Reading file: %s" % lang_file) filepath = os.path.join(tmp_dir, lang_file) with open(filepath, mode="r") as source_file: file_byte_budget_ = file_byte_budget counter = 0 countermax = int(os.path.getsize(filepath) / file_byte_budget_ / 2) logging.info("countermax: %d" % countermax) for line in source_file: if counter < countermax: counter += 1 else: if file_byte_budget_ <= 0: break line = line.strip() file_byte_budget_ -= len(line) counter = 0 yield line return get_or_generate_vocab_inner(data_dir, vocab_filename, vocab_size, generate()) def get_or_generate_vocab_inner(data_dir, vocab_filename, vocab_size, generator, max_subtoken_length=None, reserved_tokens=None): """Inner implementation for vocab generators. Args: data_dir: The base directory where data and vocab files are stored. If None, then do not save the vocab even if it doesn't exist. vocab_filename: relative filename where vocab file is stored vocab_size: target size of the vocabulary constructed by SubwordTextEncoder generator: a generator that produces tokens from the vocabulary max_subtoken_length: an optional integer. Set this to a finite value to avoid quadratic costs during vocab building. reserved_tokens: List of reserved tokens. `text_encoder.RESERVED_TOKENS` should be a prefix of `reserved_tokens`. If `None`, defaults to `RESERVED_TOKENS`. Returns: A SubwordTextEncoder vocabulary object. """ if data_dir and vocab_filename: vocab_filepath = os.path.join(data_dir, vocab_filename) if os.path.exists(vocab_filepath): logging.info("Found vocab file: %s", vocab_filepath) return SubwordTextEncoder(vocab_filepath) else: vocab_filepath = None logging.info("Generating vocab file: %s", vocab_filepath) vocab = SubwordTextEncoder.build_from_generator( generator, vocab_size, max_subtoken_length=max_subtoken_length, reserved_tokens=reserved_tokens) if vocab_filepath: if not os.path.exists(data_dir): os.makedirs(data_dir) vocab.store_to_file(vocab_filepath) return vocab def txt_line_iterator(fname): """ generator for line :param fname: :return: """ with open(fname, 'r') as f: for line in f: yield line.strip() def txt2txt_generator(source_fname, target_fname): """ :param source_fname: :param target_fname: :return: """ for source, target in zip( txt_line_iterator(source_fname), txt_line_iterator(target_fname) ): yield {"inputs": source, "targets": target} def txt2txt_encoder(sample_generator, vocab, target_vocab=None): """ :param sample_generator: :param vocab: :param target_vocab: :return: """ target_vocab = target_vocab or vocab for sample in sample_generator: sample["inputs"] = vocab.encode(sample["inputs"]) sample["inputs"].append(EOS_ID) sample["targets"] = target_vocab.encode(sample["targets"]) sample["targets"].append(EOS_ID) yield sample def txt_encoder(filename, batch_size=1, vocab=None): """ :param sample_generator: :param vocab: :return: """ def pad_mini_batch(batch): """ :param batch: :return: """ lens = map(lambda x: len(x), batch) max_len = max(lens) for i in range(len(batch)): batch[i] = batch[i] + [0] * (max_len - lens[i]) return batch fp = open(filename, 'r') samples = [] batches = [] ct = 0 for sample in fp: sample = sample.strip() if vocab: sample = vocab.encode(sample) else: sample = [int(s) for s in sample] #sample.append(EOS_ID) batches.append(sample) ct += 1 if ct % batch_size == 0: batches = pad_mini_batch(batches) samples.extend(batches) batches = [] if ct % batch_size != 0: batches += [batches[-1]] * (batch_size - ct % batch_size) batches = pad_mini_batch(batches) samples.extend(batches) return samples if __name__ == "__main__": parser = argparse.ArgumentParser("Tips for generating testset") parser.add_argument( "--vocab", type=str, required=True, help="The path of source vocab.") parser.add_argument( "--input", type=str, required=True, help="The path of testset.") parser.add_argument( "--output", type=str, required=True, help="The path of result.") args = parser.parse_args() subword = SubwordTextEncoder(args.vocab) samples = [] with open(args.input, 'r') as f: for line in f: line = line.strip() ids_list = [int(num) for num in line.split(" ")] samples.append(ids_list) with open(args.output, 'w') as f: for sample in samples: ret = subword.decode(sample) f.write("%s\n" % ret)