#### ################################## User Define Configuration ########################### ################################## Data Configuration ################################## #type of storage cluster #storage_type = "afs" #attention: files for training should be put on hdfs ##the list contains all file locations should be specified here #fs_name = "afs://xingtian.afs.baidu.com:9902" ##If force_reuse_output_path is True ,paddle will remove output_path without check output_path exist #force_reuse_output_path = "True" ##ugi of hdfs #fs_ugi = "NLP_KM_Data,NLP_km_2018" #the initial model path on hdfs used to init parameters #init_model_path= #the initial model path for pservers #pserver_model_dir= #which pass #pserver_model_pass= #example of above 2 args: #if set pserver_model_dir to /app/paddle/models #and set pserver_model_pass to 123 #then rank 0 will download model from /app/paddle/models/rank-00000/pass-00123/ #and rank 1 will download model from /app/paddle/models/rank-00001/pass-00123/, etc. ##train data path on hdfs #train_data_path = "/user/NLP_KM_Data/gongweibao/transformer/paddle_training_data/train_data" ##test data path on hdfs, can be null or not setted #test_data_path = "/app/inf/mpi/bml-guest/paddle-platform/dataset/mnist/data/test/" #the output directory on hdfs #output_path = "/user/NLP_KM_Data/gongweibao/transformer/output" #add datareader to thirdparty #thirdparty_path = "/user/NLP_KM_Data/gongweibao/transformer/thirdparty" FLAGS_rpc_deadline=3000000 #whl_name=paddlepaddle_ab57d3_post97_gpu-0.0.0-cp27-cp27mu-linux_x86_64.whl #dataset_path=/user/NLP_KM_Data/gongweibao/transformer/small/paddle_training_data PROFILE=0 FUSE=1 NCCL_COMM_NUM=2 NUM_THREADS=3 USE_HIERARCHICAL_ALLREDUCE=True NUM_CARDS=8 NUM_EPOCHS=100 BATCH_SIZE=4096