# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Embedder class. """ import paddle.fluid as fluid from paddle.fluid.dygraph import Embedding from paddle.fluid.dygraph import Layer import paddle.fluid.layers as layers import plato.modules.functions as F class Embedder(Layer): """ Composite embedding layer. """ def __init__(self, name_scope, hidden_dim, num_token_embeddings, num_pos_embeddings, num_type_embeddings, num_turn_embeddings, padding_idx=None, dropout=0.1, pos_trainable=False): super().__init__(name_scope) self.token_embedding = Embedding(name_scope=self.full_name(), size=[num_token_embeddings, hidden_dim]) self.pos_embedding = Embedding(name_scope=self.full_name(), size=[num_pos_embeddings, hidden_dim], param_attr=fluid.ParamAttr(trainable=pos_trainable)) self.type_embedding = Embedding(name_scope=self.full_name(), size=[num_type_embeddings, hidden_dim]) self.turn_embedding = Embedding(name_scope=self.full_name(), size=[num_turn_embeddings, hidden_dim]) self.dropout = dropout return def forward(self, token_inp, pos_inp, type_inp, turn_inp): embed = self.token_embedding(token_inp) + \ self.pos_embedding(pos_inp) + \ self.type_embedding(type_inp) + \ self.turn_embedding(turn_inp) embed = F.dropout(embed, self.dropout) return embed def main(): import numpy as np place = fluid.CPUPlace() with fluid.dygraph.guard(place): model = Embedder("Embedder", 10, 20, 20, 20, 20) token_inp = fluid.dygraph.to_variable(np.random.randint(0, 19, [10, 10]).astype("int64")) pos_inp = fluid.dygraph.to_variable(np.random.randint(0, 19, [10, 10]).astype("int64")) type_inp = fluid.dygraph.to_variable(np.random.randint(0, 19, [10, 10]).astype("int64")) turn_inp = fluid.dygraph.to_variable(np.random.randint(0, 19, [10, 10]).astype("int64")) out = model(token_inp, pos_inp, type_inp, turn_inp) print(out) if __name__ == "__main__": main()