# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ DataLoader class """ import math import paddle.fluid as fluid import paddle.batch from plato.args import str2bool from plato.data.sampler import RandomSampler from plato.data.sampler import SequentialSampler from plato.data.sampler import SortedSampler import plato.modules.parallel as parallel class DataLoader(object): """ Implement of DataLoader. """ @classmethod def add_cmdline_argument(cls, group): group.add_argument("--shuffle", type=str2bool, default=True) group.add_argument("--sort_pool_size", type=int, default=0) return group def __init__(self, dataset, hparams, collate_fn=None, sampler=None, is_test=False, is_train=False): self.dataset = dataset self.collate_fn = collate_fn self.sort_pool_size = hparams.sort_pool_size if sampler is None: if hparams.shuffle and not is_test: sampler = RandomSampler(dataset) else: sampler = SequentialSampler(dataset) if self.sort_pool_size > 0 and not is_test: sampler = SortedSampler(sampler, self.sort_pool_size) def reader(): for idx in sampler: yield idx self.reader = paddle.batch(reader, batch_size=hparams.batch_size, drop_last=False) self.num_batches = math.ceil(len(dataset) / hparams.batch_size) if hparams.use_data_distributed and parallel.Env().nranks > 1 and is_train: self.reader = fluid.contrib.reader.distributed_batch_reader(self.reader) self.num_batches = self.num_batches // fluid.dygraph.parallel.Env().nranks return def __len__(self): return self.num_batches def __iter__(self): for batch_indices in self.reader(): samples = [self.dataset[idx] for idx in batch_indices] yield self.collate_fn(samples)