# -*- coding: utf-8 -*- # Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """predict auto dialogue evaluation task""" import io import os import sys import six import time import numpy as np import paddle import paddle.fluid as fluid import ade.reader as reader from ade_net import create_net from ade.utils.configure import PDConfig from ade.utils.input_field import InputField from ade.utils.model_check import check_cuda import ade.utils.save_load_io as save_load_io def do_predict(args): """ predict function """ test_prog = fluid.default_main_program() startup_prog = fluid.default_startup_program() with fluid.program_guard(test_prog, startup_prog): test_prog.random_seed = args.random_seed startup_prog.random_seed = args.random_seed with fluid.unique_name.guard(): context_wordseq = fluid.data( name='context_wordseq', shape=[-1, 1], dtype='int64', lod_level=1) response_wordseq = fluid.data( name='response_wordseq', shape=[-1, 1], dtype='int64', lod_level=1) labels = fluid.data( name='labels', shape=[-1, 1], dtype='int64') input_inst = [context_wordseq, response_wordseq, labels] input_field = InputField(input_inst) data_reader = fluid.io.PyReader(feed_list=input_inst, capacity=4, iterable=False) logits = create_net( is_training=False, model_input=input_field, args=args ) logits.persistable = True fetch_list = [logits.name] #for_test is True if change the is_test attribute of operators to True test_prog = test_prog.clone(for_test=True) if args.use_cuda: place = fluid.CUDAPlace(int(os.getenv('FLAGS_selected_gpus', '0'))) else: place = fluid.CPUPlace() exe = fluid.Executor(place) exe.run(startup_prog) assert (args.init_from_params) or (args.init_from_pretrain_model) if args.init_from_params: save_load_io.init_from_params(args, exe, test_prog) if args.init_from_pretrain_model: save_load_io.init_from_pretrain_model(args, exe, test_prog) compiled_test_prog = fluid.CompiledProgram(test_prog) processor = reader.DataProcessor( data_path=args.predict_file, max_seq_length=args.max_seq_len, batch_size=args.batch_size) batch_generator = processor.data_generator( place=place, phase="test", shuffle=False, sample_pro=1) num_test_examples = processor.get_num_examples(phase='test') data_reader.decorate_batch_generator(batch_generator) data_reader.start() scores = [] while True: try: results = exe.run(compiled_test_prog, fetch_list=fetch_list) scores.extend(results[0]) except fluid.core.EOFException: data_reader.reset() break scores = scores[: num_test_examples] print("Write the predicted results into the output_prediction_file") fw = io.open(args.output_prediction_file, 'w', encoding="utf8") for index, score in enumerate(scores): fw.write("%s\t%s\n" % (index, score)) print("finish........................................") if __name__ == "__main__": args = PDConfig(yaml_file="./data/config/ade.yaml") args.build() args.Print() check_cuda(args.use_cuda) do_predict(args)