[MODEL] name = "CTCN" num_classes = 201 img_size = 512 concept_size = 402 num_anchors = 7 total_num_anchors = 1785 snippet_length = 1 root = '/ssd3/huangjun/Paddle/feats' [TRAIN] epoch = 35 filelist = 'dataset/ctcn/Activity1.3_train_rgb.listformat' rgb = 'senet152-201cls-rgb-70.3-5seg-331data_331img_train' flow = 'senet152-201cls-flow-60.9-5seg-331data_train' batch_size = 16 num_threads = 8 use_gpu = True num_gpus = 8 learning_rate = 0.0005 learning_rate_decay = 0.1 lr_decay_iter = 9000 l2_weight_decay = 1e-4 momentum = 0.9 [VALID] filelist = 'dataset/ctcn/Activity1.3_val_rgb.listformat' rgb = 'senet152-201cls-rgb-70.3-5seg-331data_331img_val' flow = 'senet152-201cls-flow-60.9-5seg-331data_val' batch_size = 16 num_threads = 8 use_gpu = True num_gpus = 8 [TEST] filelist = 'dataset/ctcn/Activity1.3_val_rgb.listformat' rgb = 'senet152-201cls-rgb-70.3-5seg-331data_331img_val' flow = 'senet152-201cls-flow-60.9-5seg-331data_val' class_label_file = 'dataset/ctcn/labels.txt' video_duration_file = 'dataset/ctcn/val_duration_frame.list' batch_size = 1 num_threads = 1 score_thresh = 0.001 nms_thresh = 0.8 sigma_thresh = 0.9 soft_thresh = 0.004 [INFER] filelist = 'dataset/ctcn/infer.list' rgb = 'senet152-201cls-rgb-70.3-5seg-331data_331img_val' flow = 'senet152-201cls-flow-60.9-5seg-331data_val' batch_size = 1 num_threads = 1