# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Optimization and learning rate scheduling.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np import paddle.fluid as fluid from utils.fp16 import create_master_params_grads, master_param_to_train_param, apply_dynamic_loss_scaling def linear_warmup_decay(learning_rate, warmup_steps, num_train_steps): """ Applies linear warmup of learning rate from 0 and decay to 0.""" with fluid.default_main_program()._lr_schedule_guard(): lr = fluid.layers.tensor.create_global_var( shape=[1], value=0.0, dtype='float32', persistable=True, name="scheduled_learning_rate") global_step = fluid.layers.learning_rate_scheduler._decay_step_counter() with fluid.layers.control_flow.Switch() as switch: with switch.case(global_step < warmup_steps): warmup_lr = learning_rate * (global_step / warmup_steps) fluid.layers.tensor.assign(warmup_lr, lr) with switch.default(): decayed_lr = fluid.layers.learning_rate_scheduler.polynomial_decay( learning_rate=learning_rate, decay_steps=num_train_steps, end_learning_rate=0.0, power=1.0, cycle=False) fluid.layers.tensor.assign(decayed_lr, lr) return lr def optimization(loss, warmup_steps, num_train_steps, learning_rate, train_program, startup_prog, weight_decay, scheduler='linear_warmup_decay', use_fp16=False, use_dynamic_loss_scaling=False, init_loss_scaling=1.0, incr_every_n_steps=1000, decr_every_n_nan_or_inf=2, incr_ratio=2.0, decr_ratio=0.8): scheduled_lr, loss_scaling = None, None if scheduler == 'noam_decay': if warmup_steps > 0: scheduled_lr = fluid.layers.learning_rate_scheduler\ .noam_decay(1/(warmup_steps *(learning_rate ** 2)), warmup_steps) else: print( "WARNING: noam decay of learning rate should have postive warmup " "steps but given {}, using constant learning rate instead!" .format(warmup_steps)) scheduled_lr = fluid.layers.create_global_var( name=fluid.unique_name.generate("learning_rate"), shape=[1], value=learning_rate, dtype='float32', persistable=True) elif scheduler == 'linear_warmup_decay': if warmup_steps > 0: scheduled_lr = linear_warmup_decay(learning_rate, warmup_steps, num_train_steps) else: print( "WARNING: linear warmup decay of learning rate should have " "postive warmup steps but given {}, use constant learning rate " "instead!".format(warmup_steps)) scheduled_lr = fluid.layers.create_global_var( name=fluid.unique_name.generate("learning_rate"), shape=[1], value=learning_rate, dtype='float32', persistable=True) else: raise ValueError("Unkown learning rate scheduler, should be " "'noam_decay' or 'linear_warmup_decay'") clip1 = fluid.clip.GradientClipByGlobalNorm(clip_norm=1.0) optimizer = fluid.optimizer.Adam( learning_rate=scheduled_lr, grad_clip=clip1) def exclude_from_weight_decay(param): name = param.name.rstrip(".master") if name.find("layer_norm") > -1: return True bias_suffix = ["_bias", "_b", ".b_0"] for suffix in bias_suffix: if name.endswith(suffix): return True return False param_list = dict() if use_fp16: loss_scaling = fluid.layers.create_global_var( name=fluid.unique_name.generate("loss_scaling"), shape=[1], value=init_loss_scaling, dtype='float32', persistable=True) loss *= loss_scaling param_grads = optimizer.backward(loss) master_param_grads = create_master_params_grads( param_grads, train_program, startup_prog, loss_scaling) if weight_decay > 0: for param, _ in master_param_grads: param_list[param.name] = param * 1.0 param_list[param.name].stop_gradient = True if use_dynamic_loss_scaling: apply_dynamic_loss_scaling( loss_scaling, master_param_grads, incr_every_n_steps, decr_every_n_nan_or_inf, incr_ratio, decr_ratio) optimizer.apply_gradients(master_param_grads) if weight_decay > 0: for param, grad in master_param_grads: if exclude_from_weight_decay(param): continue with param.block.program._optimized_guard( [param, grad]), fluid.framework.name_scope("weight_decay"): updated_param = param - param_list[ param.name] * weight_decay * scheduled_lr fluid.layers.assign(output=param, input=updated_param) master_param_to_train_param(master_param_grads, param_grads, train_program) else: if weight_decay > 0: for param in train_program.all_parameters(): param_list[param.name] = param * 1.0 param_list[param.name].stop_gradient = True _, param_grads = optimizer.minimize(loss) if weight_decay > 0: for param, grad in param_grads: if exclude_from_weight_decay(param): continue with param.block.program._optimized_guard( [param, grad]), fluid.framework.name_scope("weight_decay"): updated_param = param - param_list[ param.name] * weight_decay * scheduled_lr fluid.layers.assign(output=param, input=updated_param) return scheduled_lr, loss_scaling