#!/bin/env python #function: # a demo to show how to use the converted model genereated by caffe2fluid # #notes: # only support imagenet data import os import sys import inspect import numpy as np def import_fluid(): import paddle.fluid as fluid return fluid def load_data(imgfile, shape): h, w = shape[1:] from PIL import Image im = Image.open(imgfile) # The storage order of the loaded image is W(widht), # H(height), C(channel). PaddlePaddle requires # the CHW order, so transpose them. im = im.resize((w, h), Image.ANTIALIAS) im = np.array(im).astype(np.float32) im = im.transpose((2, 0, 1)) # CHW im = im[(2, 1, 0), :, :] # BGR # The mean to be subtracted from each image. # By default, the per-channel ImageNet mean. mean = np.array([104., 117., 124.], dtype=np.float32) mean = mean.reshape([3, 1, 1]) im = im - mean return im.reshape([1] + shape) def build_model(net_file, net_name): print('build model with net_file[%s] and net_name[%s]' % (net_file, net_name)) net_path = os.path.dirname(net_file) module_name = os.path.basename(net_file).rstrip('.py') if net_path not in sys.path: sys.path.insert(0, net_path) try: m = __import__(module_name, fromlist=[net_name]) MyNet = getattr(m, net_name) except Exception as e: print('failed to load module[%s]' % (module_name)) print(e) return None fluid = import_fluid() inputs_dict = MyNet.input_shapes() input_name = inputs_dict.keys()[0] input_shape = inputs_dict[input_name] images = fluid.layers.data( name=input_name, shape=input_shape, dtype='float32') #label = fluid.layers.data(name='label', shape=[1], dtype='int64') net = MyNet({input_name: images}) return net, inputs_dict def dump_results(results, names, root): if os.path.exists(root) is False: os.mkdir(root) for i in range(len(names)): n = names[i] res = results[i] filename = os.path.join(root, n) np.save(filename + '.npy', res) def load_model(exe, place, net_file, net_name, net_weight, debug): """ load model using xxxnet.py and xxxnet.npy """ fluid = import_fluid() #1, build model net, input_map = build_model(net_file, net_name) feed_names = input_map.keys() feed_shapes = [v for k, v in input_map.items()] prediction = net.get_output() #2, load weights for this model startup_program = fluid.default_startup_program() exe.run(startup_program) #place = fluid.CPUPlace() if net_weight.find('.npy') > 0: net.load(data_path=net_weight, exe=exe, place=place) else: raise ValueError('not found weight file') #3, test this model test_program = fluid.default_main_program().clone() fetch_list_var = [] fetch_list_name = [] if debug is False: fetch_list_var.append(prediction) else: for k, v in net.layers.items(): fetch_list_var.append(v) fetch_list_name.append(k) return { 'program': test_program, 'feed_names': feed_names, 'fetch_vars': fetch_list_var, 'fetch_names': fetch_list_name, 'feed_shapes': feed_shapes } def get_shape(fluid, program, name): for var in program.list_vars(): if var.name == 'data': return list(var.shape[1:]) raise ValueError('not found shape for input layer[%s], ' 'you can specify by yourself' % (name)) def load_inference_model(dirname, exe): """ load fluid's inference model """ fluid = import_fluid() model_fn = 'model' params_fn = 'params' if os.path.exists(os.path.join(dirname, model_fn)) \ and os.path.exists(os.path.join(dirname, params_fn)): program, feed_names, fetch_targets = fluid.io.load_inference_model(\ dirname, exe, model_fn, params_fn) else: raise ValueError('not found model files in direcotry[%s]' % (dirname)) #print fluid.global_scope().find_var(feed_names[0]) input_shape = get_shape(fluid, program, feed_names[0]) feed_shapes = [input_shape] return program, feed_names, fetch_targets, feed_shapes def infer(model_path, imgfile, net_file=None, net_name=None, debug=True): """ do inference using a model which consist 'xxx.py' and 'xxx.npy' """ fluid = import_fluid() place = fluid.CPUPlace() exe = fluid.Executor(place) try: ret = load_inference_model(model_path, exe) program, feed_names, fetch_targets, feed_shapes = ret debug = False print('found a inference model for fluid') except ValueError as e: pass print('try to load model using net file and weight file') net_weight = model_path ret = load_model(exe, place, net_file, net_name, net_weight, debug) program = ret['program'] feed_names = ret['feed_names'] fetch_targets = ret['fetch_vars'] fetch_list_name = ret['fetch_names'] feed_shapes = ret['feed_shapes'] input_name = feed_names[0] input_shape = feed_shapes[0] np_images = load_data(imgfile, input_shape) results = exe.run(program=program, feed={input_name: np_images}, fetch_list=fetch_targets) if debug is True: dump_path = 'results.paddle' dump_results(results, fetch_list_name, dump_path) print('all result of layers dumped to [%s]' % (dump_path)) else: result = results[0] print('succeed infer with results[class:%d]' % (np.argmax(result))) return 0 def caffe_infer(prototxt, caffemodel, datafile): """ do inference using pycaffe for debug, all intermediate results will be dumpped to 'results.caffe' """ import caffe net = caffe.Net(prototxt, caffemodel, caffe.TEST) input_layer = net.blobs.keys()[0] print('got name of input layer is:%s' % (input_layer)) input_shape = list(net.blobs[input_layer].data.shape[1:]) if '.npy' in datafile: np_images = np.load(datafile) else: np_images = load_data(datafile, input_shape) inputs = {input_layer: np_images} net.forward_all(**inputs) results = [] names = [] for k, v in net.blobs.items(): k = k.rstrip('_output') k = k.replace('/', '_') names.append(k) results.append(v.data.copy()) dump_path = 'results.caffe' dump_results(results, names, dump_path) print('all result of layers dumped to [%s]' % (dump_path)) return 0 if __name__ == "__main__": """ maybe more convenient to use 'run.sh' to call this tool """ net_file = 'models/resnet50/resnet50.py' weight_file = 'models/resnet50/resnet50.npy' datafile = 'data/65.jpeg' net_name = 'ResNet50' model_file = 'models/resnet50/fluid' ret = None if len(sys.argv) <= 2: pass elif sys.argv[1] == 'caffe': if len(sys.argv) != 5: print('usage:') print('\tpython %s caffe [prototxt] [caffemodel] [datafile]' % (sys.argv[0])) sys.exit(1) prototxt = sys.argv[2] caffemodel = sys.argv[3] datafile = sys.argv[4] ret = caffe_infer(prototxt, caffemodel, datafile) elif sys.argv[1] == 'infer': if len(sys.argv) != 4: print('usage:') print('\tpython %s infer [fluid_model] [datafile]' % (sys.argv[0])) sys.exit(1) model_path = sys.argv[2] datafile = sys.argv[3] ret = infer(model_path, datafile) elif sys.argv[1] == 'dump': if len(sys.argv) != 6: print('usage:') print('\tpython %s dump [net_file] [weight_file] [datafile] [net_name]' \ % (sys.argv[0])) print('\teg:python dump %s %s %s %s %s' % (sys.argv[0],\ net_file, weight_file, datafile, net_name)) sys.exit(1) net_file = sys.argv[2] weight_file = sys.argv[3] datafile = sys.argv[4] net_name = sys.argv[5] ret = infer(weight_file, datafile, net_file, net_name) if ret is None: print('usage:') print(' python %s [infer] [fluid_model] [imgfile]' % (sys.argv[0])) print(' eg:python %s infer %s %s' % (sys.argv[0], model_file, datafile)) sys.exit(1) sys.exit(ret)