"""Evaluation for DeepSpeech2 model.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import argparse import functools import paddle.v2 as paddle from data_utils.data import DataGenerator from model_utils.model import DeepSpeech2Model from utils.error_rate import wer, cer from utils.utility import add_arguments, print_arguments parser = argparse.ArgumentParser(description=__doc__) add_arg = functools.partial(add_arguments, argparser=parser) # yapf: disable add_arg('batch_size', int, 128, "Minibatch size.") add_arg('trainer_count', int, 8, "# of Trainers (CPUs or GPUs).") add_arg('beam_size', int, 500, "Beam search width.") add_arg('num_proc_bsearch', int, 8, "# of CPUs for beam search.") add_arg('num_proc_data', int, 8, "# of CPUs for data preprocessing.") add_arg('num_conv_layers', int, 2, "# of convolution layers.") add_arg('num_rnn_layers', int, 3, "# of recurrent layers.") add_arg('rnn_layer_size', int, 2048, "# of recurrent cells per layer.") add_arg('alpha', float, 2.15, "Coef of LM for beam search.") add_arg('beta', float, 0.35, "Coef of WC for beam search.") add_arg('cutoff_prob', float, 1.0, "Cutoff probability for pruning.") add_arg('cutoff_top_n', int, 40, "Cutoff number for pruning.") add_arg('use_gru', bool, False, "Use GRUs instead of simple RNNs.") add_arg('use_gpu', bool, True, "Use GPU or not.") add_arg('share_rnn_weights',bool, True, "Share input-hidden weights across " "bi-directional RNNs. Not for GRU.") add_arg('test_manifest', str, 'data/librispeech/manifest.test-clean', "Filepath of manifest to evaluate.") add_arg('mean_std_path', str, 'data/librispeech/mean_std.npz', "Filepath of normalizer's mean & std.") add_arg('vocab_path', str, 'data/librispeech/vocab.txt', "Filepath of vocabulary.") add_arg('model_path', str, './checkpoints/libri/params.latest.tar.gz', "If None, the training starts from scratch, " "otherwise, it resumes from the pre-trained model.") add_arg('lang_model_path', str, 'models/lm/common_crawl_00.prune01111.trie.klm', "Filepath for language model.") add_arg('decoding_method', str, 'ctc_beam_search', "Decoding method. Options: ctc_beam_search, ctc_greedy", choices = ['ctc_beam_search', 'ctc_greedy']) add_arg('error_rate_type', str, 'wer', "Error rate type for evaluation.", choices=['wer', 'cer']) add_arg('specgram_type', str, 'linear', "Audio feature type. Options: linear, mfcc.", choices=['linear', 'mfcc']) # yapf: disable args = parser.parse_args() def evaluate(): """Evaluate on whole test data for DeepSpeech2.""" data_generator = DataGenerator( vocab_filepath=args.vocab_path, mean_std_filepath=args.mean_std_path, augmentation_config='{}', specgram_type=args.specgram_type, num_threads=args.num_proc_data, keep_transcription_text=True) batch_reader = data_generator.batch_reader_creator( manifest_path=args.test_manifest, batch_size=args.batch_size, min_batch_size=1, sortagrad=False, shuffle_method=None) ds2_model = DeepSpeech2Model( vocab_size=data_generator.vocab_size, num_conv_layers=args.num_conv_layers, num_rnn_layers=args.num_rnn_layers, rnn_layer_size=args.rnn_layer_size, use_gru=args.use_gru, pretrained_model_path=args.model_path, share_rnn_weights=args.share_rnn_weights) # decoders only accept string encoded in utf-8 vocab_list = [chars.encode("utf-8") for chars in data_generator.vocab_list] error_rate_func = cer if args.error_rate_type == 'cer' else wer error_sum, num_ins = 0.0, 0 for infer_data in batch_reader(): result_transcripts = ds2_model.infer_batch( infer_data=infer_data, decoding_method=args.decoding_method, beam_alpha=args.alpha, beam_beta=args.beta, beam_size=args.beam_size, cutoff_prob=args.cutoff_prob, cutoff_top_n=args.cutoff_top_n, vocab_list=vocab_list, language_model_path=args.lang_model_path, num_processes=args.num_proc_bsearch) target_transcripts = [ transcript for _, transcript in infer_data ] for target, result in zip(target_transcripts, result_transcripts): error_sum += error_rate_func(target, result) num_ins += 1 print("Error rate [%s] (%d/?) = %f" % (args.error_rate_type, num_ins, error_sum / num_ins)) print("Final error rate [%s] (%d/%d) = %f" % (args.error_rate_type, num_ins, num_ins, error_sum / num_ins)) ds2_model.logger.info("finish evaluation") def main(): print_arguments(args) paddle.init(use_gpu=args.use_gpu, rnn_use_batch=True, trainer_count=args.trainer_count) evaluate() if __name__ == '__main__': main()