# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import random import sys import paddle import argparse import functools import time import numpy as np import glob from PIL import Image from scipy.misc import imsave import paddle.fluid as fluid import paddle.fluid.profiler as profiler from paddle.fluid import core import data_reader from utility import add_arguments, print_arguments, ImagePool from trainer import * from paddle.fluid.dygraph.base import to_variable import six parser = argparse.ArgumentParser(description=__doc__) add_arg = functools.partial(add_arguments, argparser=parser) # yapf: disable add_arg('input', str, "./image/testA/123_A.jpg", "input image") add_arg('output', str, "./output_0", "The directory the model and the test result to be saved to.") add_arg('init_model', str, './output_0/checkpoints/0', "The init model file of directory.") add_arg('input_style', str, "A", "A or B") def infer(): with fluid.dygraph.guard(): data_shape = [-1,3,256,256] out_path = args.output + "/single" if not os.path.exists(out_path): os.makedirs(out_path) cycle_gan = Cycle_Gan("cycle_gan") save_dir = args.init_model restore, _ = fluid.load_dygraph(save_dir) cycle_gan.set_dict(restore) cycle_gan.eval() for file in glob.glob(args.input): print ("read %s" % file) image_name = os.path.basename(file) image = Image.open(file).convert('RGB') image = image.resize((256, 256), Image.BICUBIC) image = np.array(image) / 127.5 - 1 image = image[:, :, 0:3].astype("float32") data = image.transpose([2, 0, 1])[np.newaxis,:] data_A_tmp = to_variable(data) fake_A_temp,fake_B_temp,cyc_A_temp,cyc_B_temp,g_A_loss,g_B_loss,idt_loss_A,idt_loss_B,cyc_A_loss,cyc_B_loss,g_loss = cycle_gan(data_A_tmp,data_A_tmp,True,False,False) fake_A_temp = np.squeeze(fake_A_temp.numpy()[0]).transpose([1, 2, 0]) fake_B_temp = np.squeeze(fake_B_temp.numpy()[0]).transpose([1, 2, 0]) if args.input_style == "A": imsave(out_path + "/fakeB_" + image_name, ( (fake_B_temp + 1) * 127.5).astype(np.uint8)) if args.input_style == "B": imsave(out_path + "/fakeA_" + image_name, ( (fake_A_temp + 1) * 127.5).astype(np.uint8)) if __name__ == "__main__": args = parser.parse_args() print_arguments(args) infer()