import math import heapq # for retrieval topK import multiprocessing import numpy as np from time import time import paddle.fluid as fluid import os from gmf import GMF from mlp import MLP from neumf import NeuMF from Dataset import Dataset import logging import paddle import args import utils import time #from numba import jit, autojit # Global variables that are shared across processes _model = None _testRatings = None _testNegatives = None _K = None _args = None _model_path = None def run_infer(args, model_path, test_data_path): test_data_generator = utils.CriteoDataset() with fluid.scope_guard(fluid.Scope()): test_reader = paddle.batch(test_data_generator.test(test_data_path, False), batch_size=args.test_batch_size) place = fluid.CUDAPlace(0) if args.use_gpu else fluid.CPUPlace() exe = fluid.Executor(place) exe.run(fluid.default_startup_program()) infer_program, feed_target_names, fetch_vars = fluid.io.load_inference_model(model_path, exe) for data in test_reader(): user_input = np.array([dat[0] for dat in data]) item_input = np.array([dat[1] for dat in data]) pred_val = exe.run(infer_program, feed={"user_input": user_input, "item_input": item_input}, fetch_list=fetch_vars, return_numpy=True) return pred_val[0].reshape(1, -1).tolist()[0] def evaluate_model(args, testRatings, testNegatives, K, model_path): """ Evaluate the performance (Hit_Ratio, NDCG) of top-K recommendation Return: score of each test rating. """ global _model global _testRatings global _testNegatives global _K global _model_path global _args _args = args _model_path= model_path _testRatings = testRatings _testNegatives = testNegatives _K = K hits, ndcgs = [],[] for idx in range(len(_testRatings)): (hr,ndcg) = eval_one_rating(idx) hits.append(hr) ndcgs.append(ndcg) return (hits, ndcgs) def eval_one_rating(idx): rating = _testRatings[idx] items = _testNegatives[idx] u = rating[0] gtItem = rating[1] items.append(gtItem) # Get prediction scores map_item_score = {} users = np.full(len(items), u, dtype = 'int32') users = users.reshape(-1,1) items_array = np.array(items).reshape(-1,1) temp = np.hstack((users, items_array)) np.savetxt("Data/test.txt", temp, fmt='%d', delimiter=',') predictions = run_infer(_args, _model_path, _args.test_data_path) for i in range(len(items)): item = items[i] map_item_score[item] = predictions[i] items.pop() # Evaluate top rank list ranklist = heapq.nlargest(_K, map_item_score, key=map_item_score.get) hr = getHitRatio(ranklist, gtItem) ndcg = getNDCG(ranklist, gtItem) return (hr, ndcg) def getHitRatio(ranklist, gtItem): for item in ranklist: if item == gtItem: return 1 return 0 def getNDCG(ranklist, gtItem): for i in range(len(ranklist)): item = ranklist[i] if item == gtItem: return math.log(2) / math.log(i+2) return 0